Weak parities and functorial maps
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 123-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functorial maps and weak parities that are two equivalent descriptions of one object. Functorial maps allow one to transform knots and extend knot invariants with these transformations. We introduce maximal weak parity and calculate it for knots in a given closed oriented surface. The weak parity induce a projection from virtual knots onto classical ones.
@article{CMFD_2013_51_a7,
     author = {I. M. Nikonov},
     title = {Weak parities and functorial maps},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {123--141},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/}
}
TY  - JOUR
AU  - I. M. Nikonov
TI  - Weak parities and functorial maps
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 123
EP  - 141
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/
LA  - ru
ID  - CMFD_2013_51_a7
ER  - 
%0 Journal Article
%A I. M. Nikonov
%T Weak parities and functorial maps
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 123-141
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/
%G ru
%F CMFD_2013_51_a7
I. M. Nikonov. Weak parities and functorial maps. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 123-141. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/

[1] Ilyutko D. P., Manturov V. O., Nikonov I. M., “Chetnost v teorii uzlov i graf-zatsepleniya”, Sovrem. mat. Fundam. napravl., 41, 2011, 3–163 | MR

[2] Manturov V. O., “Chetnost v teorii uzlov”, Mat. sb., 201:5 (2010), 65–110 | DOI | MR | Zbl

[3] Manturov V. O., “Chetnost, svobodnye uzly, gruppy i invarianty konechnogo poryadka”, Tr. Mosk. Mat. ob-va, 72, no. 2, 2011, 207–222 | Zbl

[4] Manturov V. O., “Chetnost i kobordizmy svobodnykh uzlov”, Mat. sb., 203:2 (2012), 45–76 | DOI | MR | Zbl

[5] Manturov V. O., “Chetnost i otsenka chisla virtualnykh perekrestkov dlya virtualnykh uzlov”, Tr. sem. po vekt. i tenz. analizu, 28, 2012, 192–210

[6] Ilyutko D., Manturov V., Nikonov I., Virtual knot invariants arising from parities, arXiv: 1102.5081v1

[7] Kamada N., Kamada S., “Abstract link diagrams and virtual knots”, J. Knot Theory Ramifications, 9:1 (2000), 93–109 | DOI | MR

[8] Kuperberg G., “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl

[9] Manturov V. O., On free knots and links, arXiv: 0902.0127[math.GT]

[10] Manturov V. O., Free knots are not invertible, arXiv: 0909.2230v2[math.GT]

[11] Manturov V. O., “Free knots and parity”, Introductory lectures on knot theory, Ser. Knots Everything, 46, 2012, 321–345 | DOI | MR | Zbl

[12] Manturov V. O., “Parity and projection from virtual knots to classical knots”, J. Knot Theory Ramifications, 22:9 (2013), 1350044, 20 pp. | DOI | MR | Zbl