Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_51_a7, author = {I. M. Nikonov}, title = {Weak parities and functorial maps}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {123--141}, publisher = {mathdoc}, volume = {51}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/} }
I. M. Nikonov. Weak parities and functorial maps. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 123-141. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a7/
[1] Ilyutko D. P., Manturov V. O., Nikonov I. M., “Chetnost v teorii uzlov i graf-zatsepleniya”, Sovrem. mat. Fundam. napravl., 41, 2011, 3–163 | MR
[2] Manturov V. O., “Chetnost v teorii uzlov”, Mat. sb., 201:5 (2010), 65–110 | DOI | MR | Zbl
[3] Manturov V. O., “Chetnost, svobodnye uzly, gruppy i invarianty konechnogo poryadka”, Tr. Mosk. Mat. ob-va, 72, no. 2, 2011, 207–222 | Zbl
[4] Manturov V. O., “Chetnost i kobordizmy svobodnykh uzlov”, Mat. sb., 203:2 (2012), 45–76 | DOI | MR | Zbl
[5] Manturov V. O., “Chetnost i otsenka chisla virtualnykh perekrestkov dlya virtualnykh uzlov”, Tr. sem. po vekt. i tenz. analizu, 28, 2012, 192–210
[6] Ilyutko D., Manturov V., Nikonov I., Virtual knot invariants arising from parities, arXiv: 1102.5081v1
[7] Kamada N., Kamada S., “Abstract link diagrams and virtual knots”, J. Knot Theory Ramifications, 9:1 (2000), 93–109 | DOI | MR
[8] Kuperberg G., “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl
[9] Manturov V. O., On free knots and links, arXiv: 0902.0127[math.GT]
[10] Manturov V. O., Free knots are not invertible, arXiv: 0909.2230v2[math.GT]
[11] Manturov V. O., “Free knots and parity”, Introductory lectures on knot theory, Ser. Knots Everything, 46, 2012, 321–345 | DOI | MR | Zbl
[12] Manturov V. O., “Parity and projection from virtual knots to classical knots”, J. Knot Theory Ramifications, 22:9 (2013), 1350044, 20 pp. | DOI | MR | Zbl