Graph-links: nonrealizability, orientation, and Jones polynomial
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 33-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to graph-links with many components and consists of two parts. In the first part of the paper we classify vertices of a labeled graph according to the component they belong to. Using this classification, we construct an invariant of graph-links. This invariant shows that the labeled second Bouchet graph generates a nonrealizable graph-link. In the second part of the work we introduce the notion of an oriented graph-link. We define a writhe number for the oriented graph-link and we get an invariant of oriented graph-links, the Jones polynomial, by normalizing the Kauffman bracket with the writhe number.
@article{CMFD_2013_51_a2,
     author = {D. P. Ilyutko and V. S. Safina},
     title = {Graph-links: nonrealizability, orientation, and {Jones} polynomial},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {33--63},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - V. S. Safina
TI  - Graph-links: nonrealizability, orientation, and Jones polynomial
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 33
EP  - 63
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/
LA  - ru
ID  - CMFD_2013_51_a2
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A V. S. Safina
%T Graph-links: nonrealizability, orientation, and Jones polynomial
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 33-63
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/
%G ru
%F CMFD_2013_51_a2
D. P. Ilyutko; V. S. Safina. Graph-links: nonrealizability, orientation, and Jones polynomial. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 33-63. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/

[1] Ilyutko D.P., “Osnaschennye 4-grafy: eilerovy tsikly, gaussovy tsikly i povorachivayuschie obkhody”, Mat. sb., 202:9 (2011), 53–76 | DOI | MR | Zbl

[2] Ilyutko D. P., Manturov V. O., “Graf-zatsepleniya”, Dokl. RAN. Ser. Mat., 428:5 (2009), 591–594 | MR

[3] Ilyutko D. P., Manturov V. O., Nikonov I. M., “Chetnost v teorii uzlov i graf-zatsepleniya”, Sovrem. mat. Fundam. napravl., 41, 2011, 3–163 | MR

[4] Manturov V. O., Teoriya uzlov, RKhD, Moskva–Izhevsk, 2005

[5] Manturov V. O., “Chetnost v teorii uzlov”, Mat. sb., 201:5 (2010), 65–110 | DOI | MR | Zbl

[6] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, 1997

[7] Bar-Natan D., Garoufalidis S., “On the Melvin–Morton–Rozansky conjecture”, Inv. Math., 125 (1996), 103–133 | DOI | MR | Zbl

[8] Bouchet A., “Circle graph obstructions”, J. Comb. Theor. Ser. B, 60 (1994), 107–144 | DOI | MR | Zbl

[9] Chmutov S. V., Duzhin S. V., Lando S. K., “Vassiliev knot invariants. I”, Adv. Sov. Math., 21, 1994, 117–126 | MR | Zbl

[10] Chmutov S., Duzhin S., Mostovoy J., Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[11] Cohn M., Lempel A., “Cycle decomposition by disjoint transpositions”, J. Combin. Theory Ser.A, 13 (1972), 83–89 | DOI | MR | Zbl

[12] Goussarov M., Polyak M., Viro O., “Finite type invariants of classical and virtual knots”, Topology, 39 (2000), 1045–1068 | DOI | MR | Zbl

[13] Ilyutko D. P., “An equivalence between the set of graph-knots and the set of homotopy classes of looped graphs”, J. Knot Theory Ramifications, 21:1 (2012), 1250001, 30 pp. | DOI | MR | Zbl

[14] Ilyutko D. P., Manturov V. O., “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl

[15] Ilyutko D. P., Manturov V. O., “Graph-links”, Introductory Lectures on Knot Theory, Selected Lectures Presented at the Advanced School and Conference on Knot Theory and its Applications to Physics and Biology, Series of Knots and Everything, 46, World Scientific, 2012, 135–161 | DOI | MR | Zbl

[16] Kamada N., Kamada S., “Abstract link diagrams and virtual knots”, J. Knot Theory Ramifications, 9:1 (2000), 93–109 | DOI | MR

[17] Kauffman L. H., Virtual knots, Talks at MSRI Meeting, January 1997 and AMS meeting at University of Maryland, College Park, March 1997

[18] Kauffman L. H., “Virtual knot theory”, Eur. J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl

[19] Manturov V. O., Knot theory, CRC-Press, Boca Raton, 2004 | MR | Zbl

[20] Manturov V. O., On free knots, arXiv: 0901.2214[math.GT]

[21] Manturov V. O., On free knots and links, arXiv: 0902.0127[math.GT]

[22] Manturov V. O., Ilyutko D. P., Virtual knots: the state of the art, World Scientific, Singapore, 2012 | MR

[23] Moran G., “Chords in a circle and linear algebra over $GF(2)$”, J. Combin. Theory Ser. A, 37 (1984), 239–247 | DOI | MR | Zbl

[24] Read R. C., Rosenstiehl P., “On the Gauss crossing problem”, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam–New-York, 1976, 843–876 | MR

[25] Reidemeister K., Knotentheorie, Springer, Berlin, 1932 | MR | Zbl

[26] Soboleva E., “Vassiliev knot invariants coming from Lie algebras and $4$-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169 | DOI | MR | Zbl

[27] Traldi L., “A bracket polynomial for graphs. II. Links, Euler circuits and marked graphs”, J. Knot Theory Ramifications, 19 (2010), 547–586 | DOI | MR | Zbl

[28] Traldi L., A bracket polynomial for graphs. III. Vertex weights, arXiv: 0905.4879[math.GT] | MR

[29] Traldi L., Binary nullity, Euler circuits and interlace polynomials, arXiv: 0903.4405[math.GO] | MR

[30] Traldi L., Zulli L., “A bracket polynomial for graphs”, J. Knot Theory Ramifications, 18 (2009), 1681–1709 | DOI | MR | Zbl