Graph-links: nonrealizability, orientation, and Jones polynomial
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 33-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to graph-links with many components and consists of two parts. In the first part of the paper we classify vertices of a labeled graph according to the component they belong to. Using this classification, we construct an invariant of graph-links. This invariant shows that the labeled second Bouchet graph generates a nonrealizable graph-link. In the second part of the work we introduce the notion of an oriented graph-link. We define a writhe number for the oriented graph-link and we get an invariant of oriented graph-links, the Jones polynomial, by normalizing the Kauffman bracket with the writhe number.
@article{CMFD_2013_51_a2,
     author = {D. P. Ilyutko and V. S. Safina},
     title = {Graph-links: nonrealizability, orientation, and {Jones} polynomial},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {33--63},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - V. S. Safina
TI  - Graph-links: nonrealizability, orientation, and Jones polynomial
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 33
EP  - 63
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/
LA  - ru
ID  - CMFD_2013_51_a2
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A V. S. Safina
%T Graph-links: nonrealizability, orientation, and Jones polynomial
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 33-63
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/
%G ru
%F CMFD_2013_51_a2
D. P. Ilyutko; V. S. Safina. Graph-links: nonrealizability, orientation, and Jones polynomial. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 33-63. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a2/