An invariant of knots in thickened surfaces
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 21-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we construct an invariant of knots in the thickened sphere with $g$g handles dependent on $2g+3$ variables. In the construction of the invariant we use the Wirtinger presentation of the knot group and the concept of parity introduced by Manturov [9]. In the present paper, we also consider examples of knots in the thickened torus considered in [2] such that their nonequivalence is proved by using the constructed polynomial.
@article{CMFD_2013_51_a1,
     author = {M. V. Zenkina},
     title = {An invariant of knots in thickened surfaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/}
}
TY  - JOUR
AU  - M. V. Zenkina
TI  - An invariant of knots in thickened surfaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 21
EP  - 32
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/
LA  - ru
ID  - CMFD_2013_51_a1
ER  - 
%0 Journal Article
%A M. V. Zenkina
%T An invariant of knots in thickened surfaces
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 21-32
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/
%G ru
%F CMFD_2013_51_a1
M. V. Zenkina. An invariant of knots in thickened surfaces. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 21-32. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/