An invariant of knots in thickened surfaces
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we construct an invariant of knots in the thickened sphere with $g$g handles dependent on $2g+3$ variables. In the construction of the invariant we use the Wirtinger presentation of the knot group and the concept of parity introduced by Manturov [9]. In the present paper, we also consider examples of knots in the thickened torus considered in [2] such that their nonequivalence is proved by using the constructed polynomial.
@article{CMFD_2013_51_a1,
     author = {M. V. Zenkina},
     title = {An invariant of knots in thickened surfaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/}
}
TY  - JOUR
AU  - M. V. Zenkina
TI  - An invariant of knots in thickened surfaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 21
EP  - 32
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/
LA  - ru
ID  - CMFD_2013_51_a1
ER  - 
%0 Journal Article
%A M. V. Zenkina
%T An invariant of knots in thickened surfaces
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 21-32
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/
%G ru
%F CMFD_2013_51_a1
M. V. Zenkina. An invariant of knots in thickened surfaces. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 21-32. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a1/

[1] Afanasev D. M., “Ob usilenii invariantov virtualnykh uzlov s pomoschyu chetnosti”, Mat. sb., 201:6 (2010), 3–18 | DOI | MR | Zbl

[2] Zenkina M. V., “Invariant zatseplenii v utolschennom tore”, Mat. zametki, 90:2 (2011), 242–253 | DOI | MR | Zbl

[3] Zenkina M. V., Manturov V. O., “Invariant zatseplenii v utolschennom tore”, Zap. nauch. sem. POMI, 372, 2009, 5–18

[4] Manturov V. O., Lektsii po teorii uzlov i ikh invariantov, URSS, M., 2001

[5] Manturov V. O., “O polinomialnykh invariantakh virtualnykh zatseplenii”, Tr. Mosk. Mat. ob-va, 65, no. 1, 2004, 175–200 | MR

[6] Manturov V. O., Teoriya uzlov, RKhD, M.–Izhevsk, 2005

[7] Manturov V. O., “Chetnost v teorii uzlov”, Mat. sb., 201:5 (2010), 65–110 | DOI | MR | Zbl

[8] Grishanov S. A., Meshkov V. R., Vassiliev V. A., “Recognizing textile structures by finite type knot invariants”, J. Knot Theory Ramifications, 18:2 (2009), 209–235 | DOI | MR | Zbl

[9] Grishanov S. A., Vassiliev V. A., “Invariants of links in 3-manifolds and splitting problem of textile structures”, J. Knot Theory Ramifications, 20:3 (2011), 345–370 | DOI | MR | Zbl

[10] Kauffman L. H., “Virtual knot theory”, Eur. J. Combinatorics, 20:7 (1999), 662–690 | DOI | MR

[11] Kauffman L. H., Formal knot theory, Dover Publ., 2006

[12] Manturov V. O., Ilyutko D. P., Virtual knots: the state of the art, World Scientific, Singapore, 2012 | MR

[13] Morton H. R., Grishanov S., “Doubly periodic textile patterns”, J. Knot Theory Ramifications, 18 (2009), 1597–1622 | DOI | MR | Zbl

[14] Ohtsuki T., Quantum invariants, World Scientific, Singapore, 2002 | MR | Zbl