The length of an extremal network in a~normed space: Maxwell formula
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider local minimal and extremal networks in normed spaces. It is well known that in the case of the Euclidean space these two classes coincide and the length of a local minimal network can be found by using only the coordinates of boundary vertices and the directions of boundary edges (the Maxwell formula). Moreover, as was shown by Ivanov and Tuzhilin [15], the length of a local minimal network in the Euclidean space can be found by using the coordinates of boundary vertices and the structure of the network. In the case of an arbitrary norm there are local minimal networks that are not extremal networks, and an analogue of the formula mentioned above is only true for extremal networks; this is the main result of the paper. Moreover, we generalize the Maxwell formula for the case of extremal networks in normed spaces and give an explicit construction of norming functionals used in the formula for several normed spaces.
@article{CMFD_2013_51_a0,
     author = {A. G. Bannikova and D. P. Ilyutko and I. M. Nikonov},
     title = {The length of an extremal network in a~normed space: {Maxwell} formula},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/}
}
TY  - JOUR
AU  - A. G. Bannikova
AU  - D. P. Ilyutko
AU  - I. M. Nikonov
TI  - The length of an extremal network in a~normed space: Maxwell formula
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 5
EP  - 20
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/
LA  - ru
ID  - CMFD_2013_51_a0
ER  - 
%0 Journal Article
%A A. G. Bannikova
%A D. P. Ilyutko
%A I. M. Nikonov
%T The length of an extremal network in a~normed space: Maxwell formula
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 5-20
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/
%G ru
%F CMFD_2013_51_a0
A. G. Bannikova; D. P. Ilyutko; I. M. Nikonov. The length of an extremal network in a~normed space: Maxwell formula. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 5-20. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/

[1] Ivanov A. O., Tuzhilin A. A., Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, Edvin–Mellen Press, 1999

[2] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003

[3] Ivanov A. O., Tuzhilin A. A., “Dlina minimalnogo dereva zadannoi topologii: obobschennaya formula Maksvella”, Vestn. MGU. Ser. 1. Matem. Mekh., 3 (2010), 7–14

[4] Ivanov A. O., Khong V. L., Tuzhilin A. A., “Ploskie seti, lokalno-minimalnye i kriticheskie dlya mankhettenskogo funktsionala dliny”, Geometriya i topologiya. 6, Zap. nauchn. sem. POMI, 279, 2011, 111–140 | MR | Zbl

[5] Ilyutko D. P., “Lokalno minimalnye seti v $N$-normirovannykh prostranstvakh”, Mat. zametki, 74:5 (2003), 656–668 | DOI | MR | Zbl

[6] Ilyutko D. P., Geometriya lokalno minimalnykh i ekstremalnykh setei v prostranstvakh s normami, Diss. na soiskanie stepeni kandidata fiz.-mat. nauk, MGU, M., 2005

[7] Ilyutko D. P., “Geometriya ekstremalnykh setei na $\lambda$-normirovannykh ploskostyakh”, Vestn. MGU. Cer. 1. Matem. Mekh., 4 (2005), 52–54 | MR

[8] Ilyutko D. P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Mat. sb., 197:5 (2006), 75–98 | DOI | MR | Zbl

[9] Brazil M., Thomas D. A., Weng J. F., “Forbidden subpaths for Steiner minimum networks in uniform orientation metrics”, Networks, 39 (2002), 186–202 | DOI | MR | Zbl

[10] Brazil M., Thomas D. A., Weng J. F., “Locally minimal uniformly oriented shortest networks”, Disc. Appl. Math. J., 154 (2006), 2545–2564 | DOI | MR | Zbl

[11] Du D.-Z., Gao B., Graham R. L., Liu Z.-G., Wan P.-J., “Minimum Steiner trees in normed planes”, Discrete Comput. Geom., 9 (1993), 351–370 | DOI | MR | Zbl

[12] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[13] Ivanov A. O., Hong V. L., Tuzhilin A. A., “Planar Manhattan local minimal and critical networks”, European J. of Combinatorics, 23:8 (2002), 949–967 | DOI | MR | Zbl

[14] Ivanov A. O., Tuzhilin A. A., Minimal networks. Steiner problem and its generalizations, CRC-Press, 1994 | MR | Zbl

[15] Ivanov A. O., Tuzhilin A. A., Branching solutions to one-dimensional variational problems, World Scientific, Singapore–New Jersey–London–Hong Kong, 2000 | MR

[16] Lawlor G., Morgan F., “Paired calibrations applied to soap films, immisceble fluids, and surfaces or networks minimizing other norms”, Pacific J. Math., 166 (1994), 55–83 | DOI | MR | Zbl

[17] Swanepoel K. J., “The local Steiner problem in normed planes”, Networks, 36 (2002), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR