Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_51_a0, author = {A. G. Bannikova and D. P. Ilyutko and I. M. Nikonov}, title = {The length of an extremal network in a~normed space: {Maxwell} formula}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--20}, publisher = {mathdoc}, volume = {51}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/} }
TY - JOUR AU - A. G. Bannikova AU - D. P. Ilyutko AU - I. M. Nikonov TI - The length of an extremal network in a~normed space: Maxwell formula JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 5 EP - 20 VL - 51 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/ LA - ru ID - CMFD_2013_51_a0 ER -
%0 Journal Article %A A. G. Bannikova %A D. P. Ilyutko %A I. M. Nikonov %T The length of an extremal network in a~normed space: Maxwell formula %J Contemporary Mathematics. Fundamental Directions %D 2013 %P 5-20 %V 51 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/ %G ru %F CMFD_2013_51_a0
A. G. Bannikova; D. P. Ilyutko; I. M. Nikonov. The length of an extremal network in a~normed space: Maxwell formula. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 5-20. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a0/
[1] Ivanov A. O., Tuzhilin A. A., Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, Edvin–Mellen Press, 1999
[2] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003
[3] Ivanov A. O., Tuzhilin A. A., “Dlina minimalnogo dereva zadannoi topologii: obobschennaya formula Maksvella”, Vestn. MGU. Ser. 1. Matem. Mekh., 3 (2010), 7–14
[4] Ivanov A. O., Khong V. L., Tuzhilin A. A., “Ploskie seti, lokalno-minimalnye i kriticheskie dlya mankhettenskogo funktsionala dliny”, Geometriya i topologiya. 6, Zap. nauchn. sem. POMI, 279, 2011, 111–140 | MR | Zbl
[5] Ilyutko D. P., “Lokalno minimalnye seti v $N$-normirovannykh prostranstvakh”, Mat. zametki, 74:5 (2003), 656–668 | DOI | MR | Zbl
[6] Ilyutko D. P., Geometriya lokalno minimalnykh i ekstremalnykh setei v prostranstvakh s normami, Diss. na soiskanie stepeni kandidata fiz.-mat. nauk, MGU, M., 2005
[7] Ilyutko D. P., “Geometriya ekstremalnykh setei na $\lambda$-normirovannykh ploskostyakh”, Vestn. MGU. Cer. 1. Matem. Mekh., 4 (2005), 52–54 | MR
[8] Ilyutko D. P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Mat. sb., 197:5 (2006), 75–98 | DOI | MR | Zbl
[9] Brazil M., Thomas D. A., Weng J. F., “Forbidden subpaths for Steiner minimum networks in uniform orientation metrics”, Networks, 39 (2002), 186–202 | DOI | MR | Zbl
[10] Brazil M., Thomas D. A., Weng J. F., “Locally minimal uniformly oriented shortest networks”, Disc. Appl. Math. J., 154 (2006), 2545–2564 | DOI | MR | Zbl
[11] Du D.-Z., Gao B., Graham R. L., Liu Z.-G., Wan P.-J., “Minimum Steiner trees in normed planes”, Discrete Comput. Geom., 9 (1993), 351–370 | DOI | MR | Zbl
[12] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[13] Ivanov A. O., Hong V. L., Tuzhilin A. A., “Planar Manhattan local minimal and critical networks”, European J. of Combinatorics, 23:8 (2002), 949–967 | DOI | MR | Zbl
[14] Ivanov A. O., Tuzhilin A. A., Minimal networks. Steiner problem and its generalizations, CRC-Press, 1994 | MR | Zbl
[15] Ivanov A. O., Tuzhilin A. A., Branching solutions to one-dimensional variational problems, World Scientific, Singapore–New Jersey–London–Hong Kong, 2000 | MR
[16] Lawlor G., Morgan F., “Paired calibrations applied to soap films, immisceble fluids, and surfaces or networks minimizing other norms”, Pacific J. Math., 166 (1994), 55–83 | DOI | MR | Zbl
[17] Swanepoel K. J., “The local Steiner problem in normed planes”, Networks, 36 (2002), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR