Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 132-164

Voir la notice de l'article provenant de la source Math-Net.Ru

An entire function such that its roots have a given $\rho$-density and are located in an angle or on a ray is considered. For such a function, we solve the problem on the least possible type at order $\rho$. The case without assumptions about the location of the roots was considered by Valiron; the corresponding problem was completely solved by Levin.
@article{CMFD_2013_49_a3,
     author = {A. Yu. Popov},
     title = {Development of the {Valiron--Levin} theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {132--164},
     publisher = {mathdoc},
     volume = {49},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 132
EP  - 164
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/
LA  - ru
ID  - CMFD_2013_49_a3
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 132-164
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/
%G ru
%F CMFD_2013_49_a3
A. Yu. Popov. Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 132-164. http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/