Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 132-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

An entire function such that its roots have a given $\rho$-density and are located in an angle or on a ray is considered. For such a function, we solve the problem on the least possible type at order $\rho$. The case without assumptions about the location of the roots was considered by Valiron; the corresponding problem was completely solved by Levin.
@article{CMFD_2013_49_a3,
     author = {A. Yu. Popov},
     title = {Development of the {Valiron--Levin} theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {132--164},
     publisher = {mathdoc},
     volume = {49},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 132
EP  - 164
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/
LA  - ru
ID  - CMFD_2013_49_a3
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 132-164
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/
%G ru
%F CMFD_2013_49_a3
A. Yu. Popov. Development of the Valiron--Levin theorem on the least possible type of entire functions with a~given upper $\rho$-density of roots. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 132-164. http://geodesic.mathdoc.fr/item/CMFD_2013_49_a3/

[1] Braichev G. G., Sherstyukov V. B., “O naimenshem vozmozhnom tipe tselykh funktsii poryadka $\rho\in\left(0,1\right)$ s polozhitelnymi nulyami”, Izv. RAN. Ser. Mat., 75:1 (2011), 3–28 | DOI | MR | Zbl

[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[3] Leontev A. F., Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR

[4] Popov A. Yu., “O polnote v prostranstvakh analiticheskikh funktsii sistem eksponent s veschestvennymi pokazatelyami zadannoi verkhnei plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1999, no. 5, 48–52 | Zbl

[5] Popov A. Yu., “Ekstremalnye zadachi v teorii analiticheskogo prodolzheniya”, Mat. sb., 190:5 (1999), 113–138 | DOI | MR | Zbl

[6] Popov A. Yu., “Tochnaya otsenka indeksa kondensatsii posledovatelnosti polozhitelnykh chisel”, Tr. MIAN, Dop. 1, 2004, 183–206 | MR

[7] Popov A. Yu., “Naimenshii vozmozhnyi tip pri $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2005, no. 1, 31–36 | MR | Zbl

[8] Popov A. Yu., “O naimenshem tipe tseloi funktsii poryadka $\rho$ s kornyami zadannoi verkhnei $\rho$-plotnosti, lezhaschimi na odnom luche”, Mat. zametki, 85:2 (2009), 246–260 | DOI | MR | Zbl

[9] Boas R. P., Entire functions, Academic Press Inc. Publishers, New York, 1954 | MR | Zbl

[10] Carlson F., Sur une classe de séries de Taylor, Diss., Upsala, 1914

[11] Denjoy A., “Sur les produits canoniques d'ordre infini”, Journ. de Math. (6), 6 (1910), 1–136 | Zbl

[12] Rubel L., “Necessary and sufficient conditions for Carlson's theorem on entire functions”, Trans. Amer. Math. Soc., 83 (1956), 417–429 | MR | Zbl

[13] Valiron G., “Sur le fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulière”, Ann. Fac. Sci. Univ. Toulouse III Ser., 5 (1913), 117–257 | DOI | MR