Compact subdifferentials in Banach spaces and their applications to variational functionals
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 99-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a theory of sublinear operators with compact values. Then, based on this theory, we construct a theory of first-order compact subdifferentials for maps in Banach spaces. The results are applicable to the calculation of compact subdifferentials of variational functionals with nonsmooth Lagrangians.
@article{CMFD_2013_49_a2,
     author = {I. V. Orlov and Z. I. Khalilova},
     title = {Compact subdifferentials in {Banach} spaces and their applications to variational functionals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {99--131},
     publisher = {mathdoc},
     volume = {49},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - Z. I. Khalilova
TI  - Compact subdifferentials in Banach spaces and their applications to variational functionals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 99
EP  - 131
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/
LA  - ru
ID  - CMFD_2013_49_a2
ER  - 
%0 Journal Article
%A I. V. Orlov
%A Z. I. Khalilova
%T Compact subdifferentials in Banach spaces and their applications to variational functionals
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 99-131
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/
%G ru
%F CMFD_2013_49_a2
I. V. Orlov; Z. I. Khalilova. Compact subdifferentials in Banach spaces and their applications to variational functionals. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 99-131. http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/

[1] Basaeva E. K., “O subdifferentsialakh ne vsyudu opredelennykh vypuklykh operatorov”, Vladikavkazskii mat. zhurn., 8:4 (2006), 6–12 | MR

[2] Demyanov V. F., Roschina V. A., “Obobschennye subdifferentsialy i ekzostery”, Vladikavkazskii mat. zhurn., 8:4 (2006), 19–31 | MR

[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[4] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[5] Kusraev A. G., Kutateladze S. S., “Lokalnyi vypuklyi analiz”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 19, VINITI, M., 1982, 155–206 | MR | Zbl

[6] Kutateladze S. S., “Vypuklye operatory”, Usp. mat. nauk, 34:1 (1979), 167–196 | MR | Zbl

[7] Levin V. L., “O subdifferentsialakh vypuklykh funktsionalov”, Usp. mat. nauk, 25:4 (1970), 183–184 | MR | Zbl

[8] Linke Yu. E., “Primeneniya teoremy Maikla i ee obraschenie k sublineinym operatoram”, Mat. zametki, 52:1 (1992), 67–75 | MR | Zbl

[9] Linke Yu. E., “Usloviya prodolzheniya ogranichennykh lineinykh i sublineinykh operatorov so znacheniyami v prostranstvakh Lindenshtraussa”, Sib. mat. zh., 51:6 (2010), 1340–1358 | MR | Zbl

[10] Linke Yu. E., “Universalnye prostranstva subdifferentsialov sublineinykh operatorov so znacheniyami v konuse ogranichennykh polunepreryvnykh snizu funktsii”, Mat. zametki, 89:4 (2011), 547–557 | DOI | MR | Zbl

[11] Orlov I. V., “$K$-differentsiruemost i $K$-ekstremumy”, Ukr. mat. vestn., 3:1 (2006), 97–115 | MR | Zbl

[12] Orlov I. V., “Gilbertovy kompakty, kompaktnye ellipsoidy i kompaktnye ekstremumy”, Sovrem. mat. Fundam. napravl., 29, 2008, 165–175 | MR

[13] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy: formula konechnykh priraschenii i smezhnye rezultaty”, Sovrem. mat. Fundam. napravl., 34, 2009, 121–138 | MR

[14] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona–Nikodima spravedliva v lyubom prostranstve Freshe”, Sovrem. mat. Fundam. napravl., 37, 2010, 55–69 | MR

[15] Polovinkin E. S., Vypuklyi analiz, Uchebnoe posobie, MFTI, M., 2006

[16] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[17] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[18] Reshetnyak Yu. G., “Usloviya ekstremuma dlya odnogo klassa funktsionalov variatsionnogo ischisleniya s negladkim integrantom”, Sib. mat. zh., 28:6 (1987), 90–101 | MR | Zbl

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[20] Rubinov A. M., “Sublineinye operatory i ikh prilozheniya”, Usp. mat. nauk, 32:4 (1977), 113–174 | MR | Zbl

[21] Rubinov A. M., Superlineinye mnogoznachnye otobrazheniya i ikh prilozheniya k ekonomiko-matematicheskim zadacham, Nauka, L., 1980 | MR

[22] Stonyakin F. S., “Sravnitelnyi analiz ponyatiya kompaktnogo subdifferentsiala”, Visn. Kharkivskogo nats. un-tu im. V. N. Karazina. Ser. Mat., prikl. mat. i mekh., 2009, no. 850, 11–21 | Zbl

[23] Tikhomirov V. M., “Vypuklyi analiz”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravl., 14, 1987, 5–101 | MR | Zbl

[24] Bertsekas D. C., Nedid A., Ozdaglar A. E., Convex analysis and optimization, Athena Scientific, Belmont, 2003 | MR | Zbl

[25] Bozhonok E. V., “Some existence conditions of compact extrema for variational functionals of several variables in Sobolev space $H^1$”, Oper. Theory Adv. Appl., 190 (2009), 141–155 | MR | Zbl

[26] Ekeland I., Temam R., Convex analysis and variational problems, North-Holland Publishing Company, Amsterdam–Oxford; American Elsevier Publishing Company, New York, 1976 | MR | Zbl

[27] Fuchssteiner B., Lusky W., Convex cones, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1981 | MR | Zbl

[28] Keimel K., Roth W., Ordered cones and approximation, Springer, Heidelberg–Berlin–New York, 1992 | MR | Zbl

[29] Orlov I. V., “Compact extrema: general theory and its applications to the variational functionals”, Oper. Theory Adv. Appl., 190 (2009), 397–417 | MR | Zbl

[30] Orlov I. V., Stonyakin F. S., “Compact variation, compact subdifferentiability and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl

[31] Ranjbari A., Saiflu H., “Some results on the uniform boundedness theorem in locally convex cones”, Methods Funct. Anal. Topology, 15:4 (2009), 361–368 | MR | Zbl

[32] Roth W., “A uniform boudedness theorem for locally convex cones”, Proc. Amer. Math. Soc., 126:7 (1998), 1973–1982 | DOI | MR | Zbl