Compact subdifferentials in Banach spaces and their applications to variational functionals
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 99-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a theory of sublinear operators with compact values. Then, based on this theory, we construct a theory of first-order compact subdifferentials for maps in Banach spaces. The results are applicable to the calculation of compact subdifferentials of variational functionals with nonsmooth Lagrangians.
@article{CMFD_2013_49_a2,
     author = {I. V. Orlov and Z. I. Khalilova},
     title = {Compact subdifferentials in {Banach} spaces and their applications to variational functionals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {99--131},
     publisher = {mathdoc},
     volume = {49},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - Z. I. Khalilova
TI  - Compact subdifferentials in Banach spaces and their applications to variational functionals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 99
EP  - 131
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/
LA  - ru
ID  - CMFD_2013_49_a2
ER  - 
%0 Journal Article
%A I. V. Orlov
%A Z. I. Khalilova
%T Compact subdifferentials in Banach spaces and their applications to variational functionals
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 99-131
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/
%G ru
%F CMFD_2013_49_a2
I. V. Orlov; Z. I. Khalilova. Compact subdifferentials in Banach spaces and their applications to variational functionals. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 99-131. http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/