Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_49_a2, author = {I. V. Orlov and Z. I. Khalilova}, title = {Compact subdifferentials in {Banach} spaces and their applications to variational functionals}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {99--131}, publisher = {mathdoc}, volume = {49}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/} }
TY - JOUR AU - I. V. Orlov AU - Z. I. Khalilova TI - Compact subdifferentials in Banach spaces and their applications to variational functionals JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 99 EP - 131 VL - 49 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/ LA - ru ID - CMFD_2013_49_a2 ER -
%0 Journal Article %A I. V. Orlov %A Z. I. Khalilova %T Compact subdifferentials in Banach spaces and their applications to variational functionals %J Contemporary Mathematics. Fundamental Directions %D 2013 %P 99-131 %V 49 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/ %G ru %F CMFD_2013_49_a2
I. V. Orlov; Z. I. Khalilova. Compact subdifferentials in Banach spaces and their applications to variational functionals. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 49 (2013), pp. 99-131. http://geodesic.mathdoc.fr/item/CMFD_2013_49_a2/
[1] Basaeva E. K., “O subdifferentsialakh ne vsyudu opredelennykh vypuklykh operatorov”, Vladikavkazskii mat. zhurn., 8:4 (2006), 6–12 | MR
[2] Demyanov V. F., Roschina V. A., “Obobschennye subdifferentsialy i ekzostery”, Vladikavkazskii mat. zhurn., 8:4 (2006), 19–31 | MR
[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR
[4] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR
[5] Kusraev A. G., Kutateladze S. S., “Lokalnyi vypuklyi analiz”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 19, VINITI, M., 1982, 155–206 | MR | Zbl
[6] Kutateladze S. S., “Vypuklye operatory”, Usp. mat. nauk, 34:1 (1979), 167–196 | MR | Zbl
[7] Levin V. L., “O subdifferentsialakh vypuklykh funktsionalov”, Usp. mat. nauk, 25:4 (1970), 183–184 | MR | Zbl
[8] Linke Yu. E., “Primeneniya teoremy Maikla i ee obraschenie k sublineinym operatoram”, Mat. zametki, 52:1 (1992), 67–75 | MR | Zbl
[9] Linke Yu. E., “Usloviya prodolzheniya ogranichennykh lineinykh i sublineinykh operatorov so znacheniyami v prostranstvakh Lindenshtraussa”, Sib. mat. zh., 51:6 (2010), 1340–1358 | MR | Zbl
[10] Linke Yu. E., “Universalnye prostranstva subdifferentsialov sublineinykh operatorov so znacheniyami v konuse ogranichennykh polunepreryvnykh snizu funktsii”, Mat. zametki, 89:4 (2011), 547–557 | DOI | MR | Zbl
[11] Orlov I. V., “$K$-differentsiruemost i $K$-ekstremumy”, Ukr. mat. vestn., 3:1 (2006), 97–115 | MR | Zbl
[12] Orlov I. V., “Gilbertovy kompakty, kompaktnye ellipsoidy i kompaktnye ekstremumy”, Sovrem. mat. Fundam. napravl., 29, 2008, 165–175 | MR
[13] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy: formula konechnykh priraschenii i smezhnye rezultaty”, Sovrem. mat. Fundam. napravl., 34, 2009, 121–138 | MR
[14] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona–Nikodima spravedliva v lyubom prostranstve Freshe”, Sovrem. mat. Fundam. napravl., 37, 2010, 55–69 | MR
[15] Polovinkin E. S., Vypuklyi analiz, Uchebnoe posobie, MFTI, M., 2006
[16] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004
[17] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl
[18] Reshetnyak Yu. G., “Usloviya ekstremuma dlya odnogo klassa funktsionalov variatsionnogo ischisleniya s negladkim integrantom”, Sib. mat. zh., 28:6 (1987), 90–101 | MR | Zbl
[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[20] Rubinov A. M., “Sublineinye operatory i ikh prilozheniya”, Usp. mat. nauk, 32:4 (1977), 113–174 | MR | Zbl
[21] Rubinov A. M., Superlineinye mnogoznachnye otobrazheniya i ikh prilozheniya k ekonomiko-matematicheskim zadacham, Nauka, L., 1980 | MR
[22] Stonyakin F. S., “Sravnitelnyi analiz ponyatiya kompaktnogo subdifferentsiala”, Visn. Kharkivskogo nats. un-tu im. V. N. Karazina. Ser. Mat., prikl. mat. i mekh., 2009, no. 850, 11–21 | Zbl
[23] Tikhomirov V. M., “Vypuklyi analiz”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravl., 14, 1987, 5–101 | MR | Zbl
[24] Bertsekas D. C., Nedid A., Ozdaglar A. E., Convex analysis and optimization, Athena Scientific, Belmont, 2003 | MR | Zbl
[25] Bozhonok E. V., “Some existence conditions of compact extrema for variational functionals of several variables in Sobolev space $H^1$”, Oper. Theory Adv. Appl., 190 (2009), 141–155 | MR | Zbl
[26] Ekeland I., Temam R., Convex analysis and variational problems, North-Holland Publishing Company, Amsterdam–Oxford; American Elsevier Publishing Company, New York, 1976 | MR | Zbl
[27] Fuchssteiner B., Lusky W., Convex cones, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1981 | MR | Zbl
[28] Keimel K., Roth W., Ordered cones and approximation, Springer, Heidelberg–Berlin–New York, 1992 | MR | Zbl
[29] Orlov I. V., “Compact extrema: general theory and its applications to the variational functionals”, Oper. Theory Adv. Appl., 190 (2009), 397–417 | MR | Zbl
[30] Orlov I. V., Stonyakin F. S., “Compact variation, compact subdifferentiability and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl
[31] Ranjbari A., Saiflu H., “Some results on the uniform boundedness theorem in locally convex cones”, Methods Funct. Anal. Topology, 15:4 (2009), 361–368 | MR | Zbl
[32] Roth W., “A uniform boudedness theorem for locally convex cones”, Proc. Amer. Math. Soc., 126:7 (1998), 1973–1982 | DOI | MR | Zbl