Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_47_a5, author = {P. Mironescu}, title = {Size of planar domains and existence of minimizers of the {Ginzburg--Landau} energy with semistiff boundary conditions}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {78--107}, publisher = {mathdoc}, volume = {47}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/} }
TY - JOUR AU - P. Mironescu TI - Size of planar domains and existence of minimizers of the Ginzburg--Landau energy with semistiff boundary conditions JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 78 EP - 107 VL - 47 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/ LA - ru ID - CMFD_2013_47_a5 ER -
%0 Journal Article %A P. Mironescu %T Size of planar domains and existence of minimizers of the Ginzburg--Landau energy with semistiff boundary conditions %J Contemporary Mathematics. Fundamental Directions %D 2013 %P 78-107 %V 47 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/ %G ru %F CMFD_2013_47_a5
P. Mironescu. Size of planar domains and existence of minimizers of the Ginzburg--Landau energy with semistiff boundary conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 78-107. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/
[1] Almeida L., “Topological sectors for Ginzburg–Landau energies”, Rev. Mat. Iberoamericana, 15:3 (1999), 487–545 | DOI | MR | Zbl
[2] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl
[3] Aubin T., “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J. Math. Pures Appl. (9), 55:3 (1976), 269–296 | MR | Zbl
[4] Bahri A., Coron J.-M., “On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain”, Comm. Pure Appl. Math., 41:3 (1988), 253–294 | DOI | MR | Zbl
[5] Berlyand L. V., Golovaty D., Rybalko V., “Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain”, C. R. Math. Acad. Sci. Paris, 343:1 (2006), 63–68 | DOI | MR | Zbl
[6] Berlyand L. V., Golovaty D., Rybalko V., Capacity of a multiply-connected domain and nonexistence of Ginzburg–Landau minimizers with prescribed degrees on the boundary, 2008, arXiv: math/0601018v4
[7] Berlyand L. V., Mironescu P., “Ginzburg–Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices”, J. Funct. Anal., 239:1 (2006), 76–99 | DOI | MR | Zbl
[8] Berlyand L. V., Mironescu P., Ginzburg–Landau minimizers in perforated domains with prescribed degrees, , 2008 http://math.univ-lyon1.fr/~mironescu/3.pdf
[9] Berlyand L. V., Mironescu P., “Two-parameter homogenization for a Ginzburg–Landau problem in a perforated domain”, Netw. Heterog. Media, 3:3 (2008), 461–487 | DOI | MR | Zbl
[10] Berlyand L. V., Mironescu P., Rybalko V., Sandier E., Minimax critical points in Ginzburg–Landau problems with semi-stiff boundary conditions: existence and bubbling, , 2012 http://hal.archives-ouvertes.fr/hal-00747639
[11] Berlyand L. V., Rybalko V., “Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation”, J. Eur. Math. Soc. (JEMS), 12:6 (2010), 1497–1531 | DOI | MR | Zbl
[12] Berlyand L. V., Voss K., “Symmetry breaking in annular domains for a Ginzburg–Landau superconductivity mode”, IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, Solid Mechanics and its Applications, 91, 2001, 189–200 | DOI
[13] Bethuel F., Brezis H., Hélein F., “Asymptotics for the minimization of a Ginzburg–Landau functional”, Calc. Var. Partial Differential Equations, 1:2 (1993), 123–148 | DOI | MR | Zbl
[14] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Progress in nonlinear differential equations and their applications, 13, Birkhäuser, Boston, 1994 | MR | Zbl
[15] Bethuel F., Ghidaglia J.-M., “Improved regularity of solutions to elliptic equations involving Jacobians and applications”, J. Math. Pures Appl. (9), 72:5 (1993), 441–474 | MR | Zbl
[16] Boutet de Monvel-Berthier A., Georgescu V., Purice R., “A boundary value problem related to the Ginzburg–Landau model”, Comm. Math. Phys., 142:1 (1991), 1–23 | DOI | MR | Zbl
[17] Brezis H., “Degree theory: old and new”, Topological nonlinear analysis (Frascati, 1995), v. II, Progr. Nonlinear Differential Equations Appl., 27, Birkhäuser, Boston, 1997, 87–108 | MR | Zbl
[18] Brezis H., Mironescu P., Sobolev maps with values into the circle. Analytical, geometrical and topological aspects, Gotovitsya k pechati
[19] Brezis H., Nirenberg L., “$H^1$ versus $C^1$ local minimizers”, C. R. Acad. Sci. Paris Sér. I Math., 317:5 (1993), 465–472 | MR | Zbl
[20] Brezis H., Nirenberg L., “Degree theory and BMO. I. Compact manifolds without boundaries”, Selecta Math. (N.S.), 1:2 (1995), 197–263 | DOI | MR | Zbl
[21] Brezis H., Nirenberg L., “Degree Theory and BMO. II. Compact manifolds with boundaries”, Selecta Math. (N.S.), 2 (1996), 309–368 | DOI | MR | Zbl
[22] Dos Santos M., “Local minimizers of the Ginzburg–Landau functional with prescribed degrees”, J. Funct. Anal., 257:4 (2009), 1053–1091 | DOI | MR | Zbl
[23] Farina A., Mironescu P., “Uniqueness of vortexless Ginzburg–Landau type minimizers in two dimensions”, Calc. Var. Partial Differential Equations, 46:3–4 (2013), 523–554 | DOI | MR | Zbl
[24] Golovaty D., Berlyand L. V., “On uniqueness of vector-valued minimizers of the Ginzburg–Landau functional in annular domains”, Calc. Var. Partial Differential Equations, 14:2 (2002), 213–232 | DOI | MR | Zbl
[25] Hélein F., Constant mean curvature surfaces, harmonic maps and integrable systems, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 2001 | MR | Zbl
[26] Jaffe A., Taubes C. H., Vortices and monopoles, Progress in Physics, 2, Birkhäuser, Boston, 1980 | MR | Zbl
[27] Lamy X., Mironescu P., Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains, Gotovitsya k pechati
[28] Lassoued L., Mironescu P., “Ginzburg–Landau type energy with discontinuous constraint”, J. Anal. Math., 77 (1999), 1–26 | DOI | MR | Zbl
[29] Mironescu P., “Explicit bounds for solutions to a Ginzburg–Landau type equation”, Rev. Roumaine Math. Pures Appl., 41:3–4 (1996), 263–271 | MR | Zbl
[30] Pacard F., Rivière T., Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser, Boston, 2000 | MR | Zbl
[31] Rubinstein J., Sternberg P., “Homotopy classification of minimizers of the Ginzburg–Landau energy and the existence of permanent currents”, Comm. Math. Phys., 179:1 (1996), 257–263 | DOI | MR | Zbl
[32] Sandier E., Serfaty S., Vortices in the magnetic Ginzburg–Landau model, Progress in nonlinear differential equations and their applications, 70, Birkhäuser, Boston, 2007 | MR | Zbl
[33] Serfaty S., “Stability in 2d Ginzburg–Landau passes to the limit”, Indiana Univ. Math. J., 54:1 (2005), 199–221 | DOI | MR | Zbl
[34] Trudinger N. S., “Remarks concerning the conformal deformation of Riemannian structures on compact manifolds”, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 265–274 | MR | Zbl
[35] Uhlenbeck K. K., “Removable singularities in Yang–Mills fields”, Comm. Math. Phys., 83:1 (1982), 11–29 | DOI | MR | Zbl