@article{CMFD_2013_47_a5,
author = {P. Mironescu},
title = {Size of planar domains and existence of minimizers of the {Ginzburg{\textendash}Landau} energy with semistiff boundary conditions},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {78--107},
year = {2013},
volume = {47},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/}
}
TY - JOUR AU - P. Mironescu TI - Size of planar domains and existence of minimizers of the Ginzburg–Landau energy with semistiff boundary conditions JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 78 EP - 107 VL - 47 UR - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/ LA - ru ID - CMFD_2013_47_a5 ER -
%0 Journal Article %A P. Mironescu %T Size of planar domains and existence of minimizers of the Ginzburg–Landau energy with semistiff boundary conditions %J Contemporary Mathematics. Fundamental Directions %D 2013 %P 78-107 %V 47 %U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/ %G ru %F CMFD_2013_47_a5
P. Mironescu. Size of planar domains and existence of minimizers of the Ginzburg–Landau energy with semistiff boundary conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 78-107. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a5/
[1] Almeida L., “Topological sectors for Ginzburg–Landau energies”, Rev. Mat. Iberoamericana, 15:3 (1999), 487–545 | DOI | MR | Zbl
[2] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl
[3] Aubin T., “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J. Math. Pures Appl. (9), 55:3 (1976), 269–296 | MR | Zbl
[4] Bahri A., Coron J.-M., “On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain”, Comm. Pure Appl. Math., 41:3 (1988), 253–294 | DOI | MR | Zbl
[5] Berlyand L. V., Golovaty D., Rybalko V., “Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain”, C. R. Math. Acad. Sci. Paris, 343:1 (2006), 63–68 | DOI | MR | Zbl
[6] Berlyand L. V., Golovaty D., Rybalko V., Capacity of a multiply-connected domain and nonexistence of Ginzburg–Landau minimizers with prescribed degrees on the boundary, 2008, arXiv: math/0601018v4
[7] Berlyand L. V., Mironescu P., “Ginzburg–Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices”, J. Funct. Anal., 239:1 (2006), 76–99 | DOI | MR | Zbl
[8] Berlyand L. V., Mironescu P., Ginzburg–Landau minimizers in perforated domains with prescribed degrees, , 2008 http://math.univ-lyon1.fr/~mironescu/3.pdf
[9] Berlyand L. V., Mironescu P., “Two-parameter homogenization for a Ginzburg–Landau problem in a perforated domain”, Netw. Heterog. Media, 3:3 (2008), 461–487 | DOI | MR | Zbl
[10] Berlyand L. V., Mironescu P., Rybalko V., Sandier E., Minimax critical points in Ginzburg–Landau problems with semi-stiff boundary conditions: existence and bubbling, , 2012 http://hal.archives-ouvertes.fr/hal-00747639
[11] Berlyand L. V., Rybalko V., “Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation”, J. Eur. Math. Soc. (JEMS), 12:6 (2010), 1497–1531 | DOI | MR | Zbl
[12] Berlyand L. V., Voss K., “Symmetry breaking in annular domains for a Ginzburg–Landau superconductivity mode”, IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, Solid Mechanics and its Applications, 91, 2001, 189–200 | DOI
[13] Bethuel F., Brezis H., Hélein F., “Asymptotics for the minimization of a Ginzburg–Landau functional”, Calc. Var. Partial Differential Equations, 1:2 (1993), 123–148 | DOI | MR | Zbl
[14] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Progress in nonlinear differential equations and their applications, 13, Birkhäuser, Boston, 1994 | MR | Zbl
[15] Bethuel F., Ghidaglia J.-M., “Improved regularity of solutions to elliptic equations involving Jacobians and applications”, J. Math. Pures Appl. (9), 72:5 (1993), 441–474 | MR | Zbl
[16] Boutet de Monvel-Berthier A., Georgescu V., Purice R., “A boundary value problem related to the Ginzburg–Landau model”, Comm. Math. Phys., 142:1 (1991), 1–23 | DOI | MR | Zbl
[17] Brezis H., “Degree theory: old and new”, Topological nonlinear analysis (Frascati, 1995), v. II, Progr. Nonlinear Differential Equations Appl., 27, Birkhäuser, Boston, 1997, 87–108 | MR | Zbl
[18] Brezis H., Mironescu P., Sobolev maps with values into the circle. Analytical, geometrical and topological aspects, Gotovitsya k pechati
[19] Brezis H., Nirenberg L., “$H^1$ versus $C^1$ local minimizers”, C. R. Acad. Sci. Paris Sér. I Math., 317:5 (1993), 465–472 | MR | Zbl
[20] Brezis H., Nirenberg L., “Degree theory and BMO. I. Compact manifolds without boundaries”, Selecta Math. (N.S.), 1:2 (1995), 197–263 | DOI | MR | Zbl
[21] Brezis H., Nirenberg L., “Degree Theory and BMO. II. Compact manifolds with boundaries”, Selecta Math. (N.S.), 2 (1996), 309–368 | DOI | MR | Zbl
[22] Dos Santos M., “Local minimizers of the Ginzburg–Landau functional with prescribed degrees”, J. Funct. Anal., 257:4 (2009), 1053–1091 | DOI | MR | Zbl
[23] Farina A., Mironescu P., “Uniqueness of vortexless Ginzburg–Landau type minimizers in two dimensions”, Calc. Var. Partial Differential Equations, 46:3–4 (2013), 523–554 | DOI | MR | Zbl
[24] Golovaty D., Berlyand L. V., “On uniqueness of vector-valued minimizers of the Ginzburg–Landau functional in annular domains”, Calc. Var. Partial Differential Equations, 14:2 (2002), 213–232 | DOI | MR | Zbl
[25] Hélein F., Constant mean curvature surfaces, harmonic maps and integrable systems, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 2001 | MR | Zbl
[26] Jaffe A., Taubes C. H., Vortices and monopoles, Progress in Physics, 2, Birkhäuser, Boston, 1980 | MR | Zbl
[27] Lamy X., Mironescu P., Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains, Gotovitsya k pechati
[28] Lassoued L., Mironescu P., “Ginzburg–Landau type energy with discontinuous constraint”, J. Anal. Math., 77 (1999), 1–26 | DOI | MR | Zbl
[29] Mironescu P., “Explicit bounds for solutions to a Ginzburg–Landau type equation”, Rev. Roumaine Math. Pures Appl., 41:3–4 (1996), 263–271 | MR | Zbl
[30] Pacard F., Rivière T., Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser, Boston, 2000 | MR | Zbl
[31] Rubinstein J., Sternberg P., “Homotopy classification of minimizers of the Ginzburg–Landau energy and the existence of permanent currents”, Comm. Math. Phys., 179:1 (1996), 257–263 | DOI | MR | Zbl
[32] Sandier E., Serfaty S., Vortices in the magnetic Ginzburg–Landau model, Progress in nonlinear differential equations and their applications, 70, Birkhäuser, Boston, 2007 | MR | Zbl
[33] Serfaty S., “Stability in 2d Ginzburg–Landau passes to the limit”, Indiana Univ. Math. J., 54:1 (2005), 199–221 | DOI | MR | Zbl
[34] Trudinger N. S., “Remarks concerning the conformal deformation of Riemannian structures on compact manifolds”, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 265–274 | MR | Zbl
[35] Uhlenbeck K. K., “Removable singularities in Yang–Mills fields”, Comm. Math. Phys., 83:1 (1982), 11–29 | DOI | MR | Zbl