Delay equations of the Wheeler--Feynman type
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an approximate model of Wheeler–Feynman electrodynamics, for which uniqueness of solutions is proved. It is simple enough to be instructive but close enough to Wheeler–Feynman electrodynamics such that we can discuss its natural type of initial data, constants of motion, and stable orbits with regard to Wheeler–Feynman electrodynamics.
@article{CMFD_2013_47_a3,
     author = {D.-A. Deckert and D. D\"urr and N. Vona},
     title = {Delay equations of the {Wheeler--Feynman} type},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {47},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a3/}
}
TY  - JOUR
AU  - D.-A. Deckert
AU  - D. Dürr
AU  - N. Vona
TI  - Delay equations of the Wheeler--Feynman type
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 46
EP  - 59
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a3/
LA  - ru
ID  - CMFD_2013_47_a3
ER  - 
%0 Journal Article
%A D.-A. Deckert
%A D. Dürr
%A N. Vona
%T Delay equations of the Wheeler--Feynman type
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 46-59
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a3/
%G ru
%F CMFD_2013_47_a3
D.-A. Deckert; D. Dürr; N. Vona. Delay equations of the Wheeler--Feynman type. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 46-59. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a3/

[1] Bauer G., Ein Existenzsatz für die Wheeler–Feynman Elektrodynamik, Herbert Utz Verlag, München, 1997

[2] Bauer G., Deckert D.-A., Dürr D., On the existence of dynamics of Wheeler–Feynman electromagnetism, 2010, arXiv: 1009.3103v2[math-ph]

[3] Bauer G., Dürr D., “The Maxwell–Lorentz system of a rigid charge”, Ann. Henri Poincaré, 2:1 (2001), 179–196 | DOI | MR | Zbl

[4] Deckert D.-A., Electrodynamic absorber theory. A mathematical study, Der Andere Verlag, 2010

[5] Dirac P. A. M., “Classical theory of radiating electrons”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 167:929 (1938), 148–169 | DOI | Zbl

[6] Driver R. D., “Can the future influence the present?”, Phys. Rev. D, 19:4 (1979), 1098–1107 | DOI | MR

[7] Louis-Martinez D. J., “Exact solutions of the relativistic many body problem”, Phys. Lett. A, 320:2–3 (2003), 103–108 | DOI | MR | Zbl

[8] Schild A., “Electromagnetic two-body problem”, Phys. Rev., 131:6 (1963), 2762–2766 | DOI | MR | Zbl

[9] Siegel C. L., Moser J. K., Lectures on celestial mechanics, Springer, 1971 | MR | Zbl

[10] Wheeler J. A., Feynman R. P., “Interaction with the absorber as the mechanism of radiation”, Rev. Mod. Phys., 17:2–3 (1945), 157–181 | DOI

[11] Wheeler J. A., Feynman R. P., “Classical electrodynamics in terms of direct interparticle action”, Rev. Mod. Phys., 21:3 (1949), 425–433 | DOI | MR | Zbl