On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The derivation of the Vlasov–Maxwell and the Vlasov–Poisson–Poisson equations from Lagrangians of classical electrodynamics is described. The equations of electromagnetohydrodynamics (EMHD) type and electrostatics with gravitation are obtained. We obtain and compare the Lagrange equalities and their generalizations for different types of the Vlasov and EMHD equations. The conveniences of writing the EMHD equations in twice divergent form are discussed. We analyze exact solutions to the Vlasov–Poisson–Poisson equations with the presence of gravitation where we have different types of nonlinear elliptic equations for trajectories of particles with critical mass $m^2=e^2/G$, which has an obvious physical sense, where $G$ denotes the gravitation constant and $e$ is the electron charge. As a consequence we have different behaviors of particles: divergence or collapse of their trajectories.
@article{CMFD_2013_47_a0,
     author = {V. V. Vedenyapin and M. A. Negmatov},
     title = {On derivation and classification of {Vlasov} type equations and equations of magnetohydrodynamics. {The} {Lagrange} identity, the {Godunov} form, and critical mass},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {47},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a0/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - M. A. Negmatov
TI  - On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 5
EP  - 17
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a0/
LA  - ru
ID  - CMFD_2013_47_a0
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A M. A. Negmatov
%T On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 5-17
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a0/
%G ru
%F CMFD_2013_47_a0
V. V. Vedenyapin; M. A. Negmatov. On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 5-17. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a0/

[1] Arsenev A. A., “Suschestvovanie obobschennykh reshenii uravneniya Vlasova”, Zhurn. vych. mat. i mat. fiz., 15:1 (1975), 136–147 | MR | Zbl

[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[3] Braginskii S. I., “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, v. 1, ed. M. A. Leontovich, Gosatomizdat, M., 1963, 183–272

[4] Vedenyapin V. V., “O statsionarnykh resheniyakh uravneniya Vlasova–Puassona”, Dokl. AN SSSR, 290:4 (1986), 777–780 | MR

[5] Vedenyapin V. V., “O klassifikatsii statsionarnykh reshenii uravneniya Vlasova na tore i granichnaya zadacha”, Dokl. AN SSSR, 323:6 (1992), 1004–1006 | MR | Zbl

[6] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[7] Vlasov A. A., “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–318 | Zbl

[8] Vlasov A. A., Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978 | MR

[9] Gavrikov M. B., Savelev V. V., “Zadachi plazmostatiki v dvukhzhidkostnoi magnitnoi gidrodinamiki s uchetom inertsii elektronov”, MZhG, 2 (2010), 176–192 | Zbl

[10] Dobrushin R. L., “Uravneniya Vlasova”, Funkts. analiz i ego prilozh., 13:2 (1979), 48–58 | MR | Zbl

[11] Kozlov V. V., “Obobschennoe kineticheskoe uravnenie Vlasova”, Usp. mat. nauk, 63:4(382) (2008), 93–130 | DOI | MR | Zbl

[12] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Logos, M., 2005

[13] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1967 | MR | Zbl

[14] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 10, Fizicheskaya kinetika, Nauka, M., 1979 | MR

[15] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[16] Maslov V. P., Mosolov P. P., “Asimptoticheskoe povedenie pri $N\to\infty$ traektorii $N$ tochechnykh mass, vzaimodeistvuyuschikh po zakonu tyagoteniya Nyutona”, Izv. AN SSSR. Ser. Mat., 42:5 (1978), 1063–1100 | MR | Zbl

[17] Pauli V., Teoriya otnositelnosti, Nauka, M., 1983

[18] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[19] Brawn W., Hepp K., “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interactive classical particles”, Commun. Math. Phys., 56:2 (1977), 101–113 | DOI | MR

[20] Liouville J., “Sur l'équation aux différences partielles”, J. Math. Pures Appl., 18 (1853), 71–72

[21] Neunzert H., “The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles”, Trans. Fluid Dynamics, 18 (1977), 663–678