On the index formula for an isometric diffeomorphism
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 141-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an elementary solution to the problem of the index of elliptic operators associated with shift operator along the trajectories of an isometric diffeomorphism of a smooth closed manifold. This solution is based on index-preserving reduction of the operator under consideration to some elliptic pseudo-differential operator on a higher-dimension manifold and on the application of the Atiyah–Singer formula. The final formula of the index is given in terms of the symbol of the operator on the original manifold.
@article{CMFD_2012_46_a7,
     author = {A. Yu. Savin and B. Yu. Sternin and E. Schrohe},
     title = {On the index formula for an isometric diffeomorphism},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {46},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
AU  - E. Schrohe
TI  - On the index formula for an isometric diffeomorphism
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 141
EP  - 152
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/
LA  - ru
ID  - CMFD_2012_46_a7
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%A E. Schrohe
%T On the index formula for an isometric diffeomorphism
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 141-152
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/
%G ru
%F CMFD_2012_46_a7
A. Yu. Savin; B. Yu. Sternin; E. Schrohe. On the index formula for an isometric diffeomorphism. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 141-152. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] Manuilov V. M., “Ob asimptoticheskikh gomomorfizmakh v algebry Kalkina”, Funkts. analiz i ego prilozh., 35:2 (2001), 81–84 | MR | Zbl

[3] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. Mat., 71:6 (2007), 91–118 | DOI | MR | Zbl

[4] Savin A. Yu., Sternin B. Yu., “Nekommutativnaya ellipticheskaya teoriya. Primery”, Tr. MIAN, 271, 2010, 204–223 | MR

[5] Savin A. Yu., Sternin B. Yu., Shroe E., “Problema indeksa ellipticheskikh operatorov, assotsiirovannykh s diffeomorfizmom mnogoobraziya i uniformizatsiya”, Dokl. RAN, 441:5 (2011), 593–596 | MR | Zbl

[6] Antonevich A., Belousov M., Lebedev A., Functional differential equations, Parts 1, 2, v. II, $C^*$-applications, Longman, Harlow, 1998 | Zbl

[7] Antonevich A., Lebedev A., Functional-Differential Equations, v. I, $C^*$-Theory, Longman, Harlow, 1994 | Zbl

[8] Atiyah M. F., Singer I. M., “The index of elliptic operators: III”, Ann. of Math. (2), 87 (1968), 546–604 | DOI | MR | Zbl

[9] Connes A., “$C^*$ algèbres et géométrie différentielle”, C. R. Math. Acad. Sci. Paris, 290:13 (1980), A599–A604 | MR

[10] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[11] Connes A., Higson N., “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Math. Acad. Sci. Paris, 311:2 (1990), 101–106 | MR | Zbl

[12] Connes A., Moscovici H., “Type III and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects of Mathematics, 38, Vieweg+Teubner, Wiesbaden, 2008, 57–71 | MR

[13] Moscovici H., “Local index formula and twisted spectral triples”, Clay Math. Proc., 11 (2010), 465–500 | MR | Zbl

[14] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Elliptic theory and noncommutative geometry, Birkhäuser, Basel, 2008 | MR

[15] Perrot D., “A Riemann–Roch theorem for one-dimensional complex groupoids”, Comm. Math. Phys., 218:2 (2001), 373–391 | DOI | MR | Zbl

[16] Savin A., Schrohe E., Sternin B., Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold, 2011, arXiv: 1111.1525 | MR

[17] Savin A., Sternin B., Index of elliptic operators for a diffeomorphism, 2011, arXiv: 1106.4195

[18] Schweitzer L. B., “Spectral invariance of dense subalgebras of operator algebras”, Internat. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl