Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2012_46_a7, author = {A. Yu. Savin and B. Yu. Sternin and E. Schrohe}, title = {On the index formula for an isometric diffeomorphism}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {141--152}, publisher = {mathdoc}, volume = {46}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/} }
TY - JOUR AU - A. Yu. Savin AU - B. Yu. Sternin AU - E. Schrohe TI - On the index formula for an isometric diffeomorphism JO - Contemporary Mathematics. Fundamental Directions PY - 2012 SP - 141 EP - 152 VL - 46 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/ LA - ru ID - CMFD_2012_46_a7 ER -
A. Yu. Savin; B. Yu. Sternin; E. Schrohe. On the index formula for an isometric diffeomorphism. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 141-152. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/
[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl
[2] Manuilov V. M., “Ob asimptoticheskikh gomomorfizmakh v algebry Kalkina”, Funkts. analiz i ego prilozh., 35:2 (2001), 81–84 | MR | Zbl
[3] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. Mat., 71:6 (2007), 91–118 | DOI | MR | Zbl
[4] Savin A. Yu., Sternin B. Yu., “Nekommutativnaya ellipticheskaya teoriya. Primery”, Tr. MIAN, 271, 2010, 204–223 | MR
[5] Savin A. Yu., Sternin B. Yu., Shroe E., “Problema indeksa ellipticheskikh operatorov, assotsiirovannykh s diffeomorfizmom mnogoobraziya i uniformizatsiya”, Dokl. RAN, 441:5 (2011), 593–596 | MR | Zbl
[6] Antonevich A., Belousov M., Lebedev A., Functional differential equations, Parts 1, 2, v. II, $C^*$-applications, Longman, Harlow, 1998 | Zbl
[7] Antonevich A., Lebedev A., Functional-Differential Equations, v. I, $C^*$-Theory, Longman, Harlow, 1994 | Zbl
[8] Atiyah M. F., Singer I. M., “The index of elliptic operators: III”, Ann. of Math. (2), 87 (1968), 546–604 | DOI | MR | Zbl
[9] Connes A., “$C^*$ algèbres et géométrie différentielle”, C. R. Math. Acad. Sci. Paris, 290:13 (1980), A599–A604 | MR
[10] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[11] Connes A., Higson N., “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Math. Acad. Sci. Paris, 311:2 (1990), 101–106 | MR | Zbl
[12] Connes A., Moscovici H., “Type III and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects of Mathematics, 38, Vieweg+Teubner, Wiesbaden, 2008, 57–71 | MR
[13] Moscovici H., “Local index formula and twisted spectral triples”, Clay Math. Proc., 11 (2010), 465–500 | MR | Zbl
[14] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Elliptic theory and noncommutative geometry, Birkhäuser, Basel, 2008 | MR
[15] Perrot D., “A Riemann–Roch theorem for one-dimensional complex groupoids”, Comm. Math. Phys., 218:2 (2001), 373–391 | DOI | MR | Zbl
[16] Savin A., Schrohe E., Sternin B., Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold, 2011, arXiv: 1111.1525 | MR
[17] Savin A., Sternin B., Index of elliptic operators for a diffeomorphism, 2011, arXiv: 1106.4195
[18] Schweitzer L. B., “Spectral invariance of dense subalgebras of operator algebras”, Internat. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl