On the index formula for an isometric diffeomorphism
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 141-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an elementary solution to the problem of the index of elliptic operators associated with shift operator along the trajectories of an isometric diffeomorphism of a smooth closed manifold. This solution is based on index-preserving reduction of the operator under consideration to some elliptic pseudo-differential operator on a higher-dimension manifold and on the application of the Atiyah–Singer formula. The final formula of the index is given in terms of the symbol of the operator on the original manifold.
@article{CMFD_2012_46_a7,
     author = {A. Yu. Savin and B. Yu. Sternin and E. Schrohe},
     title = {On the index formula for an isometric diffeomorphism},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {141--152},
     year = {2012},
     volume = {46},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
AU  - E. Schrohe
TI  - On the index formula for an isometric diffeomorphism
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 141
EP  - 152
VL  - 46
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/
LA  - ru
ID  - CMFD_2012_46_a7
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%A E. Schrohe
%T On the index formula for an isometric diffeomorphism
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 141-152
%V 46
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/
%G ru
%F CMFD_2012_46_a7
A. Yu. Savin; B. Yu. Sternin; E. Schrohe. On the index formula for an isometric diffeomorphism. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 141-152. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a7/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] Manuilov V. M., “Ob asimptoticheskikh gomomorfizmakh v algebry Kalkina”, Funkts. analiz i ego prilozh., 35:2 (2001), 81–84 | MR | Zbl

[3] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. Mat., 71:6 (2007), 91–118 | DOI | MR | Zbl

[4] Savin A. Yu., Sternin B. Yu., “Nekommutativnaya ellipticheskaya teoriya. Primery”, Tr. MIAN, 271, 2010, 204–223 | MR

[5] Savin A. Yu., Sternin B. Yu., Shroe E., “Problema indeksa ellipticheskikh operatorov, assotsiirovannykh s diffeomorfizmom mnogoobraziya i uniformizatsiya”, Dokl. RAN, 441:5 (2011), 593–596 | MR | Zbl

[6] Antonevich A., Belousov M., Lebedev A., Functional differential equations, Parts 1, 2, v. II, $C^*$-applications, Longman, Harlow, 1998 | Zbl

[7] Antonevich A., Lebedev A., Functional-Differential Equations, v. I, $C^*$-Theory, Longman, Harlow, 1994 | Zbl

[8] Atiyah M. F., Singer I. M., “The index of elliptic operators: III”, Ann. of Math. (2), 87 (1968), 546–604 | DOI | MR | Zbl

[9] Connes A., “$C^*$ algèbres et géométrie différentielle”, C. R. Math. Acad. Sci. Paris, 290:13 (1980), A599–A604 | MR

[10] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[11] Connes A., Higson N., “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Math. Acad. Sci. Paris, 311:2 (1990), 101–106 | MR | Zbl

[12] Connes A., Moscovici H., “Type III and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects of Mathematics, 38, Vieweg+Teubner, Wiesbaden, 2008, 57–71 | MR

[13] Moscovici H., “Local index formula and twisted spectral triples”, Clay Math. Proc., 11 (2010), 465–500 | MR | Zbl

[14] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Elliptic theory and noncommutative geometry, Birkhäuser, Basel, 2008 | MR

[15] Perrot D., “A Riemann–Roch theorem for one-dimensional complex groupoids”, Comm. Math. Phys., 218:2 (2001), 373–391 | DOI | MR | Zbl

[16] Savin A., Schrohe E., Sternin B., Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold, 2011, arXiv: 1111.1525 | MR

[17] Savin A., Sternin B., Index of elliptic operators for a diffeomorphism, 2011, arXiv: 1106.4195

[18] Schweitzer L. B., “Spectral invariance of dense subalgebras of operator algebras”, Internat. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl