Stability analysis for Maxwell's equation with a~thermal effect in one space dimension
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 129-140
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the asymptotic behavior of a system modeling heating of material by microwaves. Various assumptions have been made, concerning complexity (nonhomogeneous structure) and the two-phase state of the material. The mathematical model includes Maxwell's and heat-transfer equations. Stability of solutions of the system is shown.
@article{CMFD_2012_46_a6,
author = {V. Reitmann and N. Yumaguzin},
title = {Stability analysis for {Maxwell's} equation with a~thermal effect in one space dimension},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {129--140},
publisher = {mathdoc},
volume = {46},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/}
}
TY - JOUR AU - V. Reitmann AU - N. Yumaguzin TI - Stability analysis for Maxwell's equation with a~thermal effect in one space dimension JO - Contemporary Mathematics. Fundamental Directions PY - 2012 SP - 129 EP - 140 VL - 46 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/ LA - ru ID - CMFD_2012_46_a6 ER -
%0 Journal Article %A V. Reitmann %A N. Yumaguzin %T Stability analysis for Maxwell's equation with a~thermal effect in one space dimension %J Contemporary Mathematics. Fundamental Directions %D 2012 %P 129-140 %V 46 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/ %G ru %F CMFD_2012_46_a6
V. Reitmann; N. Yumaguzin. Stability analysis for Maxwell's equation with a~thermal effect in one space dimension. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 129-140. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/