Stability analysis for Maxwell's equation with a~thermal effect in one space dimension
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 129-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the asymptotic behavior of a system modeling heating of material by microwaves. Various assumptions have been made, concerning complexity (nonhomogeneous structure) and the two-phase state of the material. The mathematical model includes Maxwell's and heat-transfer equations. Stability of solutions of the system is shown.
@article{CMFD_2012_46_a6,
     author = {V. Reitmann and N. Yumaguzin},
     title = {Stability analysis for {Maxwell's} equation with a~thermal effect in one space dimension},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {46},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/}
}
TY  - JOUR
AU  - V. Reitmann
AU  - N. Yumaguzin
TI  - Stability analysis for Maxwell's equation with a~thermal effect in one space dimension
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 129
EP  - 140
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/
LA  - ru
ID  - CMFD_2012_46_a6
ER  - 
%0 Journal Article
%A V. Reitmann
%A N. Yumaguzin
%T Stability analysis for Maxwell's equation with a~thermal effect in one space dimension
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 129-140
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/
%G ru
%F CMFD_2012_46_a6
V. Reitmann; N. Yumaguzin. Stability analysis for Maxwell's equation with a~thermal effect in one space dimension. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 129-140. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a6/

[1] Kamenomostskaya S. L., “O zadache Stefana”, Matem. sb., 53(95):4 (1961), 489–514 | MR | Zbl

[2] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[3] Oleinik O. A., “Ob odnom metode resheniya obschei zadachi Stefana”, Dokl. AN SSSR, 135 (1960), 1054–1057 | MR

[4] Serkova N., Dvukhfazovaya zadacha teploperedachi dlya neodnorodnogo materiala., Diplomnaya rabota, Sankt-Peterburgskii gosudarstvennyi universitet, 2011

[5] Cannon J. R., DiBenedetto E., “On the existence of weak solutions to an $n$-dimensional Stefan problem with nonlinear bondary conditions”, SIAM J. Math. Anal., 11:4 (1978), 632–645 | DOI | MR

[6] Deuflhard P., Weiser M., Seebass M., “A new nonlinear elliptic multilevel FEM applied to regional hyperthermia”, Comput. Vis. Sci., 3:3 (2000), 115–120 | DOI | Zbl

[7] Dewynne J. N., Howison S. D., Ockendon J. R., Xie W., “Asymptotic behaviour of solutions to the Stefan problem with a kinetic condition at the free boundary”, J. Aust. Math. Soc., 31 (1989), 81–96 | DOI | MR | Zbl

[8] Ermakov I., Kalinin Y., Reitmann V., “Determining modes and almost periodic integrals for cocycles”, Differential Equations and Control Processes, 4 (2011), 113–137 | MR

[9] Friedman A., “The Stefan problem in several space variables”, Trans. Amer. Math. Soc., 132 (1968), 57–87 | MR

[10] Kalinin Y., Reitmann V., Yumaguzin N., “Asymptotic behavior of Maxwell's equation in one-space dimension with termal effect”, Discrete Contin. Dyn. Syst., 2011, Suppl., Vol. 2, 754–762 | MR

[11] Kumar S., Katiyar V. K., “Numerical study on phase change heat transfer during combined hyperthermia and cryosurgical treatment of lung cancer”, Int. J. of Appl. Math. and Mech. (e-Journal System), 3:3 (2007), 1–17

[12] Manoranjan V. S., Showalter R., Yin H.-M., “On two-phase Stefan problem arising from a microwave heating process”, Discrete Contin. Dyn. Syst., 15:4 (2006), 1155–1168 | DOI | MR | Zbl

[13] Morgan J., Yin H.-M., “On Maxwell's system with a thermal effect”, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 485–494 | DOI | MR | Zbl

[14] Niezgodka M., Pawlow I., “A generalized Stefan problem in several space variables”, Appl. Math. Optim., 9 (1983), 193–224 | DOI | MR | Zbl

[15] Yin H.-M., “Regularity of weak solution to Maxwell's equations and applications to microwave heating”, J. Differential Equations, 200 (2004), 137–161 | DOI | MR | Zbl