Topological approximation approach to study of mathematical problems of hydrodynamics
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 92-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of an abstract scheme of the topological approximation method and mention those fields where its application to concrete models of hydrodynamics yields results. As an illustration, we expose in detail the problem of optimal control of right-hand sides in the initialboundary value problem describing the motion of a viscoelastic incompressible fluid in the Jeffreys model with the Jaumann objective derivative.
@article{CMFD_2012_46_a4,
     author = {V. G. Zvyagin},
     title = {Topological approximation approach to study of mathematical problems of hydrodynamics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {92--119},
     publisher = {mathdoc},
     volume = {46},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/}
}
TY  - JOUR
AU  - V. G. Zvyagin
TI  - Topological approximation approach to study of mathematical problems of hydrodynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 92
EP  - 119
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/
LA  - ru
ID  - CMFD_2012_46_a4
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%T Topological approximation approach to study of mathematical problems of hydrodynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 92-119
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/
%G ru
%F CMFD_2012_46_a4
V. G. Zvyagin. Topological approximation approach to study of mathematical problems of hydrodynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 92-119. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/

[1] Vorotnikov D. A., “O povtoryayuscheisya kontsentratsii i periodicheskikh rezhimakh pri anomalnoi diffuzii v polimerakh”, Mat. sb., 201:1 (2010), 59–80 | DOI | MR | Zbl

[2] Vorotnikov D. A., “O suschestvovanii slabykh statsionarnykh reshenii kraevoi zadachi v modeli Dzheffrisa dvizheniya vyazkouprugoi sredy”, Izv. vuzov. Ser. Mat., 2004, no. 9, 13–17 | MR

[3] Vorotnikov D. A., Zvyagin V. G., “Obzor rezultatov i otkrytykh problem po matematicheskim modelyam dvizheniya vyazkouprugikh sred tipa Dzheffrisa”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2009, no. 2, 30–50

[4] Vorotnikov D. A., Zvyagin V. G., “O traektornykh i globalnykh attraktorakh dlya uravnenii dvizheniya vyazkouprugoi sredy”, Usp. mat. nauk, 61:2 (2006), 161–162 | DOI | MR | Zbl

[5] Zvyagin A. V., “Issledovanie razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Vestn. Voronezh. gos. un-ta. Ser. Mat., 2011, no. 1, 103–118

[6] Zvyagin A. V., “O korrektnoi razreshimosti nelineinykh uravnenii”, Spectral and Evolution Problems, 20, Simferopol, 2010, 136–140

[7] Zvyagin A. V., “O razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Ser. Mat., 2011, no. 2, 103–105 | MR | Zbl

[8] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004

[9] Zvyagin V. G., Kondratev S. K., Attraktory dlya uravnenii modelei dvizheniya vyazkouprugikh sred, Izd. Voronezh. gos. un-ta, 2010

[10] Zvyagin V. G., Kondrateva S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Izv. vuzov. Ser. Mat., 2011, no. 8, 86–89 | MR | Zbl

[11] Zvyagin V. G., Kuznetsov A. V., “O plotnosti mnozhestva pravykh chastei nachalno-zadachi modeli Dzheffrisa s ob'ektivnoi proizvodnoi Yaumanna”, Usp. mat. nauk, 63:6 (2008), 165–166 | DOI | MR | Zbl

[12] Zvyagin V. G., Kuznetsov A. V., “Optimalnoe upravlenie v modeli dvizheniya vyazkouprugoi sredy s ob'ektivnoi proizvodnoi”, Izv. vuzov. Ser. Mat., 2009, no. 5, 55–61 | MR | Zbl

[13] Zvyagin V. G., Kuzmin M. Yu., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Sovrem. mat. Fundam. napral., 16, 2006, 38–46 | MR

[14] Zvyagin V. G., Kuzmin M. Yu., Kornev S. V., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2011, no. 2, 180–197

[15] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovrem. mat. Fundam. napravl., 31, 2009, 3–144 | MR

[16] Zvyagin V. G., Turbin M. V., “O suschestvovanii i edinstvennosti slabogo resheniya nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Foigta v oblasti s izmenyayuscheisya so vremenem granitsei”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2007, no. 2, 180–197

[17] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[18] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniiya, Nauka, M., 1969 | MR

[19] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[20] Fursikov A. V., “Zadachi upravleniya i uravneniya Nave–Stoksa i Eilera”, Mat. sb., 115(157):2(6) (1981), 281–306 | MR | Zbl

[21] Fursikov A. V., Optimalnoe upravlenie raspredelitelnymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[22] Dmitrienko V. T., Zvyagin V. G., “Investigation of a regularized model of motion of a viscoelastic medium”, Analytical Approaches to Multidimensional Balance Laws, Nova, New York, 2006, 119–142 | MR | Zbl

[23] Gori C., Obukhovskii V., Rubbioni P., Zvyagin V., “Optimization of the motion of a visco-elastic fluid via multivalued topological degree method”, Dynamic Systems and Applications, 16 (2007), 89–104 | MR | Zbl

[24] Guilliope C., Saut J.-C., “Existence results for the flow of viscoelastic fluids with differential constitutive law”, Nonlinear Anal., 15:9 (1990), 849–869 | DOI | MR

[25] Hoppe R. H. W., Kuzmin M. Y., Litvinov W. G., Zvyagin V. G., “Flow of electrorheological fluid under conditions of slip on the boundary”, Abstr. Appl. Anal., 2006 (2006), 1–14 | DOI | MR | Zbl

[26] Leray J., “Étude de diverses équations intégrales nonlineaires et de quelques problèmes que posent l'hydrodynamique”, J. Math. Pures Appl., 12 (1933), 1–82 | MR | Zbl

[27] Obukhovskii V., Zecca P., Zvyagin V., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23 (2004), 323–337 | MR

[28] Simon J., “Compact sets in $L_p(0,T;B)$”, Ann. Mat. Pura Appl., 4 (1987), 65–96 | MR | Zbl

[29] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004 (2004), 815–829 | DOI | MR | Zbl

[30] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325 (2007), 438–458 | DOI | MR | Zbl

[31] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10 (2008), 19–44 | DOI | MR | Zbl

[32] Zvyagin V. G., Kuzmin M. Yu., “On an optimal control problem in the Voigt model of the motion of a viscoelastic fluid”, J. Math. Sci. (N.Y.), 149:5 (2008), 1618–1627 | DOI | MR

[33] Zvyagin V. G., Orlov V. P., “On weak solutions of the equations of motion of a viscoelastic medium with variable boundary”, Bound. Value Probl., 3 (2005), 215–245 | MR | Zbl

[34] Zvyagin V., Turbin M., “Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions”, J. Optim. Theory Appl., 148:1 (2011), 146–163 | DOI | MR | Zbl

[35] Zvyagin V. G., Turbin M. V., “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci. (N.Y.), 168:2 (2010), 157–308 | DOI | MR

[36] Zvyagin V. G., Vorotnikov D. A., “Approximating-topological methods in some problems of hydrodynamics”, J. Fixed Point Theory Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl

[37] Zvyagin V., Vorotnikov D., Topological approximation methods for evolutionary problems of nonlinear hydrodinamics, de Gruyter series in nonlinear analysis and applications, 12, Walter de Gruyter, Berlin–New York, 2008 | DOI | MR