Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2012_46_a4, author = {V. G. Zvyagin}, title = {Topological approximation approach to study of mathematical problems of hydrodynamics}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {92--119}, publisher = {mathdoc}, volume = {46}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/} }
TY - JOUR AU - V. G. Zvyagin TI - Topological approximation approach to study of mathematical problems of hydrodynamics JO - Contemporary Mathematics. Fundamental Directions PY - 2012 SP - 92 EP - 119 VL - 46 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/ LA - ru ID - CMFD_2012_46_a4 ER -
V. G. Zvyagin. Topological approximation approach to study of mathematical problems of hydrodynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 92-119. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a4/
[1] Vorotnikov D. A., “O povtoryayuscheisya kontsentratsii i periodicheskikh rezhimakh pri anomalnoi diffuzii v polimerakh”, Mat. sb., 201:1 (2010), 59–80 | DOI | MR | Zbl
[2] Vorotnikov D. A., “O suschestvovanii slabykh statsionarnykh reshenii kraevoi zadachi v modeli Dzheffrisa dvizheniya vyazkouprugoi sredy”, Izv. vuzov. Ser. Mat., 2004, no. 9, 13–17 | MR
[3] Vorotnikov D. A., Zvyagin V. G., “Obzor rezultatov i otkrytykh problem po matematicheskim modelyam dvizheniya vyazkouprugikh sred tipa Dzheffrisa”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2009, no. 2, 30–50
[4] Vorotnikov D. A., Zvyagin V. G., “O traektornykh i globalnykh attraktorakh dlya uravnenii dvizheniya vyazkouprugoi sredy”, Usp. mat. nauk, 61:2 (2006), 161–162 | DOI | MR | Zbl
[5] Zvyagin A. V., “Issledovanie razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Vestn. Voronezh. gos. un-ta. Ser. Mat., 2011, no. 1, 103–118
[6] Zvyagin A. V., “O korrektnoi razreshimosti nelineinykh uravnenii”, Spectral and Evolution Problems, 20, Simferopol, 2010, 136–140
[7] Zvyagin A. V., “O razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Ser. Mat., 2011, no. 2, 103–105 | MR | Zbl
[8] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004
[9] Zvyagin V. G., Kondratev S. K., Attraktory dlya uravnenii modelei dvizheniya vyazkouprugikh sred, Izd. Voronezh. gos. un-ta, 2010
[10] Zvyagin V. G., Kondrateva S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Izv. vuzov. Ser. Mat., 2011, no. 8, 86–89 | MR | Zbl
[11] Zvyagin V. G., Kuznetsov A. V., “O plotnosti mnozhestva pravykh chastei nachalno-zadachi modeli Dzheffrisa s ob'ektivnoi proizvodnoi Yaumanna”, Usp. mat. nauk, 63:6 (2008), 165–166 | DOI | MR | Zbl
[12] Zvyagin V. G., Kuznetsov A. V., “Optimalnoe upravlenie v modeli dvizheniya vyazkouprugoi sredy s ob'ektivnoi proizvodnoi”, Izv. vuzov. Ser. Mat., 2009, no. 5, 55–61 | MR | Zbl
[13] Zvyagin V. G., Kuzmin M. Yu., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Sovrem. mat. Fundam. napral., 16, 2006, 38–46 | MR
[14] Zvyagin V. G., Kuzmin M. Yu., Kornev S. V., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2011, no. 2, 180–197
[15] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovrem. mat. Fundam. napravl., 31, 2009, 3–144 | MR
[16] Zvyagin V. G., Turbin M. V., “O suschestvovanii i edinstvennosti slabogo resheniya nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Foigta v oblasti s izmenyayuscheisya so vremenem granitsei”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2007, no. 2, 180–197
[17] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[18] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniiya, Nauka, M., 1969 | MR
[19] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[20] Fursikov A. V., “Zadachi upravleniya i uravneniya Nave–Stoksa i Eilera”, Mat. sb., 115(157):2(6) (1981), 281–306 | MR | Zbl
[21] Fursikov A. V., Optimalnoe upravlenie raspredelitelnymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl
[22] Dmitrienko V. T., Zvyagin V. G., “Investigation of a regularized model of motion of a viscoelastic medium”, Analytical Approaches to Multidimensional Balance Laws, Nova, New York, 2006, 119–142 | MR | Zbl
[23] Gori C., Obukhovskii V., Rubbioni P., Zvyagin V., “Optimization of the motion of a visco-elastic fluid via multivalued topological degree method”, Dynamic Systems and Applications, 16 (2007), 89–104 | MR | Zbl
[24] Guilliope C., Saut J.-C., “Existence results for the flow of viscoelastic fluids with differential constitutive law”, Nonlinear Anal., 15:9 (1990), 849–869 | DOI | MR
[25] Hoppe R. H. W., Kuzmin M. Y., Litvinov W. G., Zvyagin V. G., “Flow of electrorheological fluid under conditions of slip on the boundary”, Abstr. Appl. Anal., 2006 (2006), 1–14 | DOI | MR | Zbl
[26] Leray J., “Étude de diverses équations intégrales nonlineaires et de quelques problèmes que posent l'hydrodynamique”, J. Math. Pures Appl., 12 (1933), 1–82 | MR | Zbl
[27] Obukhovskii V., Zecca P., Zvyagin V., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23 (2004), 323–337 | MR
[28] Simon J., “Compact sets in $L_p(0,T;B)$”, Ann. Mat. Pura Appl., 4 (1987), 65–96 | MR | Zbl
[29] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004 (2004), 815–829 | DOI | MR | Zbl
[30] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325 (2007), 438–458 | DOI | MR | Zbl
[31] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10 (2008), 19–44 | DOI | MR | Zbl
[32] Zvyagin V. G., Kuzmin M. Yu., “On an optimal control problem in the Voigt model of the motion of a viscoelastic fluid”, J. Math. Sci. (N.Y.), 149:5 (2008), 1618–1627 | DOI | MR
[33] Zvyagin V. G., Orlov V. P., “On weak solutions of the equations of motion of a viscoelastic medium with variable boundary”, Bound. Value Probl., 3 (2005), 215–245 | MR | Zbl
[34] Zvyagin V., Turbin M., “Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions”, J. Optim. Theory Appl., 148:1 (2011), 146–163 | DOI | MR | Zbl
[35] Zvyagin V. G., Turbin M. V., “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci. (N.Y.), 168:2 (2010), 157–308 | DOI | MR
[36] Zvyagin V. G., Vorotnikov D. A., “Approximating-topological methods in some problems of hydrodynamics”, J. Fixed Point Theory Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl
[37] Zvyagin V., Vorotnikov D., Topological approximation methods for evolutionary problems of nonlinear hydrodinamics, de Gruyter series in nonlinear analysis and applications, 12, Walter de Gruyter, Berlin–New York, 2008 | DOI | MR