On a problem of the constructive theory of harmonic mappings
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 5-30
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of irremovable error appears in finite difference realization of the Winslow approach in the constructive theory of harmonic mappings. As an example, we consider the well-known Roache–Steinberg problem and demonstrate a new approach, which allows us to construct harmonic mappings of complicated domains effectively and with high precision. This possibility is given by the analytic-numerical method of multipoles with exponential convergence rate. It guarantees effective construction of a harmonic mapping with precision controlled by an a posteriori estimate in a uniform norm with respect to the domain.
@article{CMFD_2012_46_a0,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {On a~problem of the constructive theory of harmonic mappings},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--30},
     year = {2012},
     volume = {46},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - On a problem of the constructive theory of harmonic mappings
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 5
EP  - 30
VL  - 46
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/
LA  - ru
ID  - CMFD_2012_46_a0
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T On a problem of the constructive theory of harmonic mappings
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 5-30
%V 46
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/
%G ru
%F CMFD_2012_46_a0
S. I. Bezrodnykh; V. I. Vlasov. On a problem of the constructive theory of harmonic mappings. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 5-30. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/

[1] Azarenok B. N., “O postroenii strukturirovannykh setok v dvumernykh nevypuklykh oblastyakh s pomoschyu otobrazhenii”, Zhurn. vych. mat. i mat. fiz., 49:5 (2009), 826–839 | MR | Zbl

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Bezrodnykh S. I., Singulyarnaya zadacha Rimana–Gilberta i ee prilozhenie, Kandid. disser., VTs RAN, M., 2006

[4] Bezrodnykh S. I., Vlasov V. I., “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Spectral and Evolution Problems, 16 (2006), 51–62

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973

[7] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[8] Belinskii P. P., Godunov S. K., Ivanov Yu. V., Yanenko I. K., “Primenenie odno klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zhurn. vych. mat. i mat. fiz., 15:6 (1975), 1499–1511 | MR | Zbl

[9] Vabischevich P. N., “Adaptivnye setki sostavnogo tipa v zadachakh matematicheskoi fiziki”, Zhurn. vych. mat. i mat. fiz., 29:6 (1989), 902–914 | MR | Zbl

[10] Vlasov V. I., “Ob odnom metode resheniya nekotorykh smeshannykh zadach dlya uravneniya Laplasa”, Dokl. AN SSSR, 237:5 (1977), 1012–1015 | MR | Zbl

[11] Vlasov V. I., “Prostranstvo tipa Khardi funktsii, garmonicheskikh v oblastyakh s uglami”, Matematichki vesnik, 38:4 (1986), 609–616 | MR | Zbl

[12] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR

[13] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Prokopov G. P., Kraiko A. M., Nauka, M., 1976 | MR

[14] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zhurn. vych. mat. i mat. fiz., 12:2 (1972), 429–440 | MR | Zbl

[15] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[16] Zorich V. A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, Usp. mat. nauk, 57:3 (2002), 3–28 | DOI | MR | Zbl

[17] Ivanenko S. A., Adaptivno-garmonicheskie setki, Izd-vo VTs RAN, M., 1997 | MR

[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zhurn. vych. mat. i mat. fiz., 28:4 (1988), 503–514 | MR | Zbl

[19] Ivanenko S. A., “Primenenie adaptivno-garmonicheskikh setok dlya chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami”, Zhurn. vych. mat. i mat. fiz., 35:10 (1995), 1494–1517 | MR | Zbl

[20] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setki”, Zhurn. vych. mat. i mat. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[21] Kudryavtsev L. D., “O svoistvakh garmonicheskikh otobrazhenii ploskikh oblastei”, Mat. sb., 36(78):2 (1955), 201–208 | MR | Zbl

[22] Lavrentev M. A., “Sure une classe de représentations continues”, Mat. sb., 42:4 (1935), 407–424 | Zbl

[23] Lavrentev M. A., “Obschaya zadacha teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Mat. sb., 21(63):2 (1947), 285–320 | MR | Zbl

[24] Lavrentev M. A., “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR, 12:6 (1948), 513–554 | MR | Zbl

[25] Markushevich A. M., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968 | Zbl

[26] Prokopov G. P., “Konstruirovanie testovykh zadach dlya postroeniya dvumernykh regulyarnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1993, no. 1, 7–12

[27] Prokopov G. P., “Metodologiya variatsionnogo podkhoda k postroeniyu kvaziortogonalnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1998, no. 1, 37–46

[28] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[29] Sidorov A. F., Shabashova T. I., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekhaniki sploshn. sredy, 12:5 (1981), 106–124

[30] Sofronov I. D., Rasskazova V. V., Nesterenko L. V., “Neregulyarnye setki v metodakh rascheta nestatsionarnykh zadach gazovoi dinamiki”, Vopr. matem. modelirovaniya, vychisl. matem. i informatiki, Sb., Min. RF Atomnoi energii, M.–Arzamas-16, 1984, 131–183

[31] Yanenko N. N., Danaev N. T., Liseikin V. D., “O variatsionnom metode postroeniya setok”, Chisl. metody mekhaniki sploshn. sredy, 8:4 (1977), 157–163 | MR

[32] Ahlfors L., “Zur theorie der überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | MR | Zbl

[33] Ahlfors L. V., Lectures on quasiconformal mappings, D. Van Nostrand Co., Toronto–New York–London, 1966 | MR | Zbl

[34] Alessandrini G., Nesi V., “Invertible harmonic mappings, beyong Kneser”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8:3 (2009), 451–468 | MR | Zbl

[35] Anderson G. D., Vamanamurty M. K., Vuorinen M., Conformal invariants, inequalities and quasiconformal mappings, J. Wiley, 1997

[36] Arcilla A. S. et al. (eds.), Numerical grid generation in computational fluid dynamics and related fields, Proceedings, Third International Conference (Barcelona, Spain, 3–7 June, 1991), North-Holland, New York, 1991 | MR | Zbl

[37] Bers L., “Isolated singularities of minimal surfaces”, Ann. of Math., 53 (1951), 364–386 | DOI | MR | Zbl

[38] Bers L., “Univalent solutions of linear elliptic systems”, Comm. Pure Appl. Math., 6 (1953), 513–526 | DOI | MR | Zbl

[39] Bojarski B. V., “Homeomorphic solutions of a Beltrami system”, Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 | MR | Zbl

[40] Bojarski B. V., Iwaniec T., “Quasiconformal mappings and non-linear elliptic equations in two variables I”, Bull. Pol. Acad. Sci. Math., 22 (1974), 473–478 | MR | Zbl

[41] Brackbill J. U., “An adaptive grid with directional control”, J. Comput. Phys., 108:1 (1993), 38–50 | DOI | MR | Zbl

[42] Brackbill J. U., Kothe D. B., Ruppel H. L., “FLIP: a low-dissipation, particle-in-cell method for fluid flow”, Comput. Phys. Comm., 48:1 (1988), 25–38 | DOI | MR

[43] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[44] Bshouty D., Hengartner W., “Boundary values versus dilatations of harmonic mappings”, J. Anal. Math., 72 (1997), 141–164 | DOI | MR | Zbl

[45] Bshouty D., Hengartner W., “Univalent harmonic mappings in the plane”, Handbook of complex analysis: geometric function, v. 2, Elsevier, Amsterdam, 2005, 479–506 | DOI | MR | Zbl

[46] Caratheodory C., “Über die gegenseitige Bezeihung der Ränder bei der Konformer Abbildung des Inneren einer Jordanschen Kurve auf einer Kreis”, Math. Ann., 73 (1913), 305–320 | DOI | MR | Zbl

[47] Choquet G., “Sur un type de transformation analitiques généralisant la représentation conforme et définie au moyen de fonctions harmoniques”, Bull. Cl. Sci. Math. Nat. Sci. Math., 69:2 (1945), 156–165 | MR | Zbl

[48] Chu W. H., “Development of a general finite difference approximation for a general domain. I. Mashine transformation”, J. Comput. Phys., 8 (1971), 392–408 | DOI | Zbl

[49] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | MR | Zbl

[50] Duren P., Harmonic mappings in the plane, Cambrige Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[51] Duren P., Khavinson D., “Boundary correspondence and dilatation of harmonic mappings”, Complex Variables Theory Appl., 33 (1997), 105–111 | DOI | MR | Zbl

[52] Eells J., Lemaire L., “A report on harmonic maps”, Bull. Lond. Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl

[53] Eiseman P. R., “Adaptive grid generation”, Comput. Methods in Appl. Mech. Engrg., 64 (1987), 321–376 | DOI | MR | Zbl

[54] Grötzsch H., “Über die verzerrung bei schlichten nichtkonformen abbildungen und über eine damit zusammenhängende erweiterung des picardschen satzes”, Ber. Verh. Sächs. Akad. Wiss., 80 (1928), 503–507

[55] Hall R. R., “A class of isoperimetric inequalities”, J. Anal. Math., 45 (1985), 169–180 | DOI | MR | Zbl

[56] Hamilton R., Harmonic maps of manifolds with boundary, Lecture Notes in Comput. Sci., 471, Springer, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[57] Heinz E., “Über die lösungen der minimalflächengleichung”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1952 (1952), 51–56 | MR | Zbl

[58] Hengartner W., Szynal J., “Univalent harmonic ring mappings vanishing on the interior boundary”, Canad. J. Math., 44:1 (1992), 308–323 | DOI | MR | Zbl

[59] Hengartner W., Schober G., “Harmonic mappings with given dilatation”, J. Lond. Math. Soc., 33 (1986), 473–483 | DOI | MR | Zbl

[60] Hengartner W., Schober G., “On the boundary behavior of orientation-preserving harmonic mappings”, Complex Variables Theory Appl., 5 (1986), 197–208 | DOI | MR | Zbl

[61] Hersch J., Pfluger A., “Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques”, C. R. Acad. Sci. Paris, 234 (1952), 43–45 | MR | Zbl

[62] Jost J., Lectures on harmonic maps, Lecture Notes in Math., 1161, Springer, Berlin–New York, 1985 | MR

[63] Keldysh M. V., Lavrentieff M. A., “Sur la representation conform des domaines limitès par les courbes rectifiables”, Ann. Ecole Norm. sup. (3), 54 (1937), 1–38 | MR | Zbl

[64] Kneser H., “Lösung der Aufgabe 41”, J. Ber. Deutsch. Math. Verein., 35 (1926), 123–124

[65] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Methods Partial Differential Equations, 11 (1995), 561–571 | DOI | MR | Zbl

[66] Knupp P., Steinberg S., Fundamentals of Grid Generation, CRC Press, Boca Raton, 1993 | MR

[67] Lavrentieff M., “Sur une methode geometrique dans la representation conforme”, Atti Congr. intern. mat. (Bologna, 1928), Comm sez., 3, Zanichelli, Bologna, 1930, 241–242

[68] Lehto O., Virtanen K. I., Quasiconformal mappings in the plane, Second edition, Springer, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[69] Lewy H., “On the non-vanishing of the Jacobian in certain one-to-one mappings”, Bull. Amer. Math. Soc. (N.S.), 42 (1936), 689–692 | DOI | MR | Zbl

[70] Liao G., “On harmonic maps”, Mathematical Aspects of Numerical Grid Generation, ed. Castillo J. E., SIAM, Philadelphia, 1991, 123–130 | DOI | MR

[71] Liseikin V. D., Grid generation methods, Springer, New York, 1999 | MR | Zbl

[72] Martio O., “On harmonic quasiconformal mappings”, Ann. Acad. Sci. Fenn. Math., 1968, 3–10 | MR

[73] Morrey Ch. B. (Jr.), “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[74] Nitsche J. C. C., “Über eine mit der minimalflächengleichung zusammenhängende analytische funktion und den bernsteinschen satz”, Arch. Math. (Basel), 7 (1956), 417–419 | DOI | MR

[75] Nitsche J. C. C., “On an estimate for the curvature of minimal surfaces $z=z(x,y)$”, J. Math. Mech., 7 (1958), 767–769 | MR | Zbl

[76] Radó T., “Aufgabe 41”, J. Ber. Deutsch. Math. Verein., 35 (1926), 49

[77] Radó T., “Über den analytischen charakter der minimalflächen”, Math. Z., 24 (1926), 321–327 | DOI | MR

[78] Radó T., “Zu einem satze von S. Bernstein über minimalflächen im grossen”, Math. Z., 26 (1927), 559–565 | DOI | MR | Zbl

[79] Renelt H., Elliptic systems and quasiconformal mappings, John Wiley Sons, New York, 1988 | MR | Zbl

[80] Roache P. J., Steinberg S., “A new approach to grid genaration using a variational formulation”, Proc. AIAA 7-th CFD conference, Cincinnati, 1985, 360–370

[81] Sengupta S. et al. (eds.), Numerical grid generation in computational fluid mechanics, Pineridge Press Ltd, 1988

[82] Serezhnikiva T. I., Sidorov A. F., Ushakova O. V., “On one method of construction of optimal curvilinear grids and its applications”, Sov. Journ. Numer. Anal. Math. Modelling, 4:2 (1989), 137–155 | MR

[83] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., 42 (1990), 237–248 | DOI | MR | Zbl

[84] Smith P. W., Sritharan S. S., “Theory of harmonic grid generation”, Complex variables, 10 (1988), 359–369 | DOI | MR | Zbl

[85] Steinberg S., Roache P., “Variational curve and surface grid genaration”, J. Comput. Phys., 100:1 (1992), 163–178 | DOI | MR | Zbl

[86] Takagi T., Miki K., Chen B. C. J., Sha U. T., “Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrary curved surfaces”, J. Comput. Phys., 58 (1985), 67–79 | DOI | Zbl

[87] Teichmüller O., “Eine anwendung quasikonformen abbildungen auf das typenproblem”, Deutsche Math., 2 (1937), 321–327

[88] Teichmüller O., “Untersuchungen über konforme und quasikonforme abbildung”, Deutsche Math., 3 (1938), 621–678

[89] Teichmüller O., “Extremal quasikonforme abbildungen und quadratische differentiale”, Abh. Preuss. Akad. Wiss. Math., 22 (1940), 3–197 | MR

[90] Thompson J. F. (eds.), Numerical Grid Generation, North-Holland, New York, 1982 | MR | Zbl

[91] Thompson J. F., Soni B. K., Weatherill N. P. (eds.), Handbook of grid generation, CRC Press, Boca Raton, 1999 | MR | Zbl

[92] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation, North-Holland, New York, 1985 | MR | Zbl

[93] Vlasov V. I., “Multipole method for solving some boundary value problems in complex-shaped domains”, ZAMM Z. Angew. Math. Mech., 76, Suppl. 1 (1996), 279–282 | MR | Zbl

[94] Warsi Z. U., “Numerical grid generation in arbitrary surfaces through a second-order differential-geometric model”, J. Comput. Phys., 64 (1986), 82–96 | DOI | MR | Zbl

[95] Warsi Z. U., Thompson J. F., “Application of variational methods in the fixed and adaptive grid generation”, Comput. Math. Applic., 19:8–9 (1990), 31–41 | DOI | MR | Zbl

[96] Warsi Z. U., Tuarn W. N., “Surface mesh generation using elliptic equations”, Numerical grid generation in computational fluid dynamics, Pineridge Press, UK, 1986, 95–100

[97] Wendland W. L., Elliptic systems in the plane, Pitman, London, 1979 | MR | Zbl

[98] Winslow A., “Numerical solution of the quasi-linear Poisson equations in a nonuniform triangle mesh”, J. Comput. Phys., 2 (1967), 149–172 | MR

[99] Surface modelling, grid generation and related issues in computational fluid dynamic solutions, Proc. Workshop (NASA Lewis Research Center, Cleveland, Ohio May 9–11, 1995)

[100] 8-th International conference on numerical grid generation in computational field simulations, Proceedings (Waikiki Beach Marriott Resort Honolulu, Hawaii, USA June 2–6, 2002)

[101] 14-th International meshing roundtable, Proceedings (San Diego, USA, 2005), Springer, 2005

[102] 20-th International meshing roundtable, Proceedings (Paris, France, 2011), Springer, 2011