On a~problem of the constructive theory of harmonic mappings
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 5-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of irremovable error appears in finite difference realization of the Winslow approach in the constructive theory of harmonic mappings. As an example, we consider the well-known Roache–Steinberg problem and demonstrate a new approach, which allows us to construct harmonic mappings of complicated domains effectively and with high precision. This possibility is given by the analytic-numerical method of multipoles with exponential convergence rate. It guarantees effective construction of a harmonic mapping with precision controlled by an a posteriori estimate in a uniform norm with respect to the domain.
@article{CMFD_2012_46_a0,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {On a~problem of the constructive theory of harmonic mappings},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {46},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - On a~problem of the constructive theory of harmonic mappings
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 5
EP  - 30
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/
LA  - ru
ID  - CMFD_2012_46_a0
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T On a~problem of the constructive theory of harmonic mappings
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 5-30
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/
%G ru
%F CMFD_2012_46_a0
S. I. Bezrodnykh; V. I. Vlasov. On a~problem of the constructive theory of harmonic mappings. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 5-30. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a0/

[1] Azarenok B. N., “O postroenii strukturirovannykh setok v dvumernykh nevypuklykh oblastyakh s pomoschyu otobrazhenii”, Zhurn. vych. mat. i mat. fiz., 49:5 (2009), 826–839 | MR | Zbl

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Bezrodnykh S. I., Singulyarnaya zadacha Rimana–Gilberta i ee prilozhenie, Kandid. disser., VTs RAN, M., 2006

[4] Bezrodnykh S. I., Vlasov V. I., “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Spectral and Evolution Problems, 16 (2006), 51–62

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973

[7] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[8] Belinskii P. P., Godunov S. K., Ivanov Yu. V., Yanenko I. K., “Primenenie odno klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zhurn. vych. mat. i mat. fiz., 15:6 (1975), 1499–1511 | MR | Zbl

[9] Vabischevich P. N., “Adaptivnye setki sostavnogo tipa v zadachakh matematicheskoi fiziki”, Zhurn. vych. mat. i mat. fiz., 29:6 (1989), 902–914 | MR | Zbl

[10] Vlasov V. I., “Ob odnom metode resheniya nekotorykh smeshannykh zadach dlya uravneniya Laplasa”, Dokl. AN SSSR, 237:5 (1977), 1012–1015 | MR | Zbl

[11] Vlasov V. I., “Prostranstvo tipa Khardi funktsii, garmonicheskikh v oblastyakh s uglami”, Matematichki vesnik, 38:4 (1986), 609–616 | MR | Zbl

[12] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR

[13] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Prokopov G. P., Kraiko A. M., Nauka, M., 1976 | MR

[14] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zhurn. vych. mat. i mat. fiz., 12:2 (1972), 429–440 | MR | Zbl

[15] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[16] Zorich V. A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, Usp. mat. nauk, 57:3 (2002), 3–28 | DOI | MR | Zbl

[17] Ivanenko S. A., Adaptivno-garmonicheskie setki, Izd-vo VTs RAN, M., 1997 | MR

[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zhurn. vych. mat. i mat. fiz., 28:4 (1988), 503–514 | MR | Zbl

[19] Ivanenko S. A., “Primenenie adaptivno-garmonicheskikh setok dlya chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami”, Zhurn. vych. mat. i mat. fiz., 35:10 (1995), 1494–1517 | MR | Zbl

[20] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setki”, Zhurn. vych. mat. i mat. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[21] Kudryavtsev L. D., “O svoistvakh garmonicheskikh otobrazhenii ploskikh oblastei”, Mat. sb., 36(78):2 (1955), 201–208 | MR | Zbl

[22] Lavrentev M. A., “Sure une classe de représentations continues”, Mat. sb., 42:4 (1935), 407–424 | Zbl

[23] Lavrentev M. A., “Obschaya zadacha teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Mat. sb., 21(63):2 (1947), 285–320 | MR | Zbl

[24] Lavrentev M. A., “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR, 12:6 (1948), 513–554 | MR | Zbl

[25] Markushevich A. M., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968 | Zbl

[26] Prokopov G. P., “Konstruirovanie testovykh zadach dlya postroeniya dvumernykh regulyarnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1993, no. 1, 7–12

[27] Prokopov G. P., “Metodologiya variatsionnogo podkhoda k postroeniyu kvaziortogonalnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1998, no. 1, 37–46

[28] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[29] Sidorov A. F., Shabashova T. I., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekhaniki sploshn. sredy, 12:5 (1981), 106–124

[30] Sofronov I. D., Rasskazova V. V., Nesterenko L. V., “Neregulyarnye setki v metodakh rascheta nestatsionarnykh zadach gazovoi dinamiki”, Vopr. matem. modelirovaniya, vychisl. matem. i informatiki, Sb., Min. RF Atomnoi energii, M.–Arzamas-16, 1984, 131–183

[31] Yanenko N. N., Danaev N. T., Liseikin V. D., “O variatsionnom metode postroeniya setok”, Chisl. metody mekhaniki sploshn. sredy, 8:4 (1977), 157–163 | MR

[32] Ahlfors L., “Zur theorie der überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | MR | Zbl

[33] Ahlfors L. V., Lectures on quasiconformal mappings, D. Van Nostrand Co., Toronto–New York–London, 1966 | MR | Zbl

[34] Alessandrini G., Nesi V., “Invertible harmonic mappings, beyong Kneser”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8:3 (2009), 451–468 | MR | Zbl

[35] Anderson G. D., Vamanamurty M. K., Vuorinen M., Conformal invariants, inequalities and quasiconformal mappings, J. Wiley, 1997

[36] Arcilla A. S. et al. (eds.), Numerical grid generation in computational fluid dynamics and related fields, Proceedings, Third International Conference (Barcelona, Spain, 3–7 June, 1991), North-Holland, New York, 1991 | MR | Zbl

[37] Bers L., “Isolated singularities of minimal surfaces”, Ann. of Math., 53 (1951), 364–386 | DOI | MR | Zbl

[38] Bers L., “Univalent solutions of linear elliptic systems”, Comm. Pure Appl. Math., 6 (1953), 513–526 | DOI | MR | Zbl

[39] Bojarski B. V., “Homeomorphic solutions of a Beltrami system”, Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 | MR | Zbl

[40] Bojarski B. V., Iwaniec T., “Quasiconformal mappings and non-linear elliptic equations in two variables I”, Bull. Pol. Acad. Sci. Math., 22 (1974), 473–478 | MR | Zbl

[41] Brackbill J. U., “An adaptive grid with directional control”, J. Comput. Phys., 108:1 (1993), 38–50 | DOI | MR | Zbl

[42] Brackbill J. U., Kothe D. B., Ruppel H. L., “FLIP: a low-dissipation, particle-in-cell method for fluid flow”, Comput. Phys. Comm., 48:1 (1988), 25–38 | DOI | MR

[43] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[44] Bshouty D., Hengartner W., “Boundary values versus dilatations of harmonic mappings”, J. Anal. Math., 72 (1997), 141–164 | DOI | MR | Zbl

[45] Bshouty D., Hengartner W., “Univalent harmonic mappings in the plane”, Handbook of complex analysis: geometric function, v. 2, Elsevier, Amsterdam, 2005, 479–506 | DOI | MR | Zbl

[46] Caratheodory C., “Über die gegenseitige Bezeihung der Ränder bei der Konformer Abbildung des Inneren einer Jordanschen Kurve auf einer Kreis”, Math. Ann., 73 (1913), 305–320 | DOI | MR | Zbl

[47] Choquet G., “Sur un type de transformation analitiques généralisant la représentation conforme et définie au moyen de fonctions harmoniques”, Bull. Cl. Sci. Math. Nat. Sci. Math., 69:2 (1945), 156–165 | MR | Zbl

[48] Chu W. H., “Development of a general finite difference approximation for a general domain. I. Mashine transformation”, J. Comput. Phys., 8 (1971), 392–408 | DOI | Zbl

[49] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | MR | Zbl

[50] Duren P., Harmonic mappings in the plane, Cambrige Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[51] Duren P., Khavinson D., “Boundary correspondence and dilatation of harmonic mappings”, Complex Variables Theory Appl., 33 (1997), 105–111 | DOI | MR | Zbl

[52] Eells J., Lemaire L., “A report on harmonic maps”, Bull. Lond. Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl

[53] Eiseman P. R., “Adaptive grid generation”, Comput. Methods in Appl. Mech. Engrg., 64 (1987), 321–376 | DOI | MR | Zbl

[54] Grötzsch H., “Über die verzerrung bei schlichten nichtkonformen abbildungen und über eine damit zusammenhängende erweiterung des picardschen satzes”, Ber. Verh. Sächs. Akad. Wiss., 80 (1928), 503–507

[55] Hall R. R., “A class of isoperimetric inequalities”, J. Anal. Math., 45 (1985), 169–180 | DOI | MR | Zbl

[56] Hamilton R., Harmonic maps of manifolds with boundary, Lecture Notes in Comput. Sci., 471, Springer, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[57] Heinz E., “Über die lösungen der minimalflächengleichung”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1952 (1952), 51–56 | MR | Zbl

[58] Hengartner W., Szynal J., “Univalent harmonic ring mappings vanishing on the interior boundary”, Canad. J. Math., 44:1 (1992), 308–323 | DOI | MR | Zbl

[59] Hengartner W., Schober G., “Harmonic mappings with given dilatation”, J. Lond. Math. Soc., 33 (1986), 473–483 | DOI | MR | Zbl

[60] Hengartner W., Schober G., “On the boundary behavior of orientation-preserving harmonic mappings”, Complex Variables Theory Appl., 5 (1986), 197–208 | DOI | MR | Zbl

[61] Hersch J., Pfluger A., “Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques”, C. R. Acad. Sci. Paris, 234 (1952), 43–45 | MR | Zbl

[62] Jost J., Lectures on harmonic maps, Lecture Notes in Math., 1161, Springer, Berlin–New York, 1985 | MR

[63] Keldysh M. V., Lavrentieff M. A., “Sur la representation conform des domaines limitès par les courbes rectifiables”, Ann. Ecole Norm. sup. (3), 54 (1937), 1–38 | MR | Zbl

[64] Kneser H., “Lösung der Aufgabe 41”, J. Ber. Deutsch. Math. Verein., 35 (1926), 123–124

[65] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Methods Partial Differential Equations, 11 (1995), 561–571 | DOI | MR | Zbl

[66] Knupp P., Steinberg S., Fundamentals of Grid Generation, CRC Press, Boca Raton, 1993 | MR

[67] Lavrentieff M., “Sur une methode geometrique dans la representation conforme”, Atti Congr. intern. mat. (Bologna, 1928), Comm sez., 3, Zanichelli, Bologna, 1930, 241–242

[68] Lehto O., Virtanen K. I., Quasiconformal mappings in the plane, Second edition, Springer, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[69] Lewy H., “On the non-vanishing of the Jacobian in certain one-to-one mappings”, Bull. Amer. Math. Soc. (N.S.), 42 (1936), 689–692 | DOI | MR | Zbl

[70] Liao G., “On harmonic maps”, Mathematical Aspects of Numerical Grid Generation, ed. Castillo J. E., SIAM, Philadelphia, 1991, 123–130 | DOI | MR

[71] Liseikin V. D., Grid generation methods, Springer, New York, 1999 | MR | Zbl

[72] Martio O., “On harmonic quasiconformal mappings”, Ann. Acad. Sci. Fenn. Math., 1968, 3–10 | MR

[73] Morrey Ch. B. (Jr.), “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[74] Nitsche J. C. C., “Über eine mit der minimalflächengleichung zusammenhängende analytische funktion und den bernsteinschen satz”, Arch. Math. (Basel), 7 (1956), 417–419 | DOI | MR

[75] Nitsche J. C. C., “On an estimate for the curvature of minimal surfaces $z=z(x,y)$”, J. Math. Mech., 7 (1958), 767–769 | MR | Zbl

[76] Radó T., “Aufgabe 41”, J. Ber. Deutsch. Math. Verein., 35 (1926), 49

[77] Radó T., “Über den analytischen charakter der minimalflächen”, Math. Z., 24 (1926), 321–327 | DOI | MR

[78] Radó T., “Zu einem satze von S. Bernstein über minimalflächen im grossen”, Math. Z., 26 (1927), 559–565 | DOI | MR | Zbl

[79] Renelt H., Elliptic systems and quasiconformal mappings, John Wiley Sons, New York, 1988 | MR | Zbl

[80] Roache P. J., Steinberg S., “A new approach to grid genaration using a variational formulation”, Proc. AIAA 7-th CFD conference, Cincinnati, 1985, 360–370

[81] Sengupta S. et al. (eds.), Numerical grid generation in computational fluid mechanics, Pineridge Press Ltd, 1988

[82] Serezhnikiva T. I., Sidorov A. F., Ushakova O. V., “On one method of construction of optimal curvilinear grids and its applications”, Sov. Journ. Numer. Anal. Math. Modelling, 4:2 (1989), 137–155 | MR

[83] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., 42 (1990), 237–248 | DOI | MR | Zbl

[84] Smith P. W., Sritharan S. S., “Theory of harmonic grid generation”, Complex variables, 10 (1988), 359–369 | DOI | MR | Zbl

[85] Steinberg S., Roache P., “Variational curve and surface grid genaration”, J. Comput. Phys., 100:1 (1992), 163–178 | DOI | MR | Zbl

[86] Takagi T., Miki K., Chen B. C. J., Sha U. T., “Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrary curved surfaces”, J. Comput. Phys., 58 (1985), 67–79 | DOI | Zbl

[87] Teichmüller O., “Eine anwendung quasikonformen abbildungen auf das typenproblem”, Deutsche Math., 2 (1937), 321–327

[88] Teichmüller O., “Untersuchungen über konforme und quasikonforme abbildung”, Deutsche Math., 3 (1938), 621–678

[89] Teichmüller O., “Extremal quasikonforme abbildungen und quadratische differentiale”, Abh. Preuss. Akad. Wiss. Math., 22 (1940), 3–197 | MR

[90] Thompson J. F. (eds.), Numerical Grid Generation, North-Holland, New York, 1982 | MR | Zbl

[91] Thompson J. F., Soni B. K., Weatherill N. P. (eds.), Handbook of grid generation, CRC Press, Boca Raton, 1999 | MR | Zbl

[92] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation, North-Holland, New York, 1985 | MR | Zbl

[93] Vlasov V. I., “Multipole method for solving some boundary value problems in complex-shaped domains”, ZAMM Z. Angew. Math. Mech., 76, Suppl. 1 (1996), 279–282 | MR | Zbl

[94] Warsi Z. U., “Numerical grid generation in arbitrary surfaces through a second-order differential-geometric model”, J. Comput. Phys., 64 (1986), 82–96 | DOI | MR | Zbl

[95] Warsi Z. U., Thompson J. F., “Application of variational methods in the fixed and adaptive grid generation”, Comput. Math. Applic., 19:8–9 (1990), 31–41 | DOI | MR | Zbl

[96] Warsi Z. U., Tuarn W. N., “Surface mesh generation using elliptic equations”, Numerical grid generation in computational fluid dynamics, Pineridge Press, UK, 1986, 95–100

[97] Wendland W. L., Elliptic systems in the plane, Pitman, London, 1979 | MR | Zbl

[98] Winslow A., “Numerical solution of the quasi-linear Poisson equations in a nonuniform triangle mesh”, J. Comput. Phys., 2 (1967), 149–172 | MR

[99] Surface modelling, grid generation and related issues in computational fluid dynamic solutions, Proc. Workshop (NASA Lewis Research Center, Cleveland, Ohio May 9–11, 1995)

[100] 8-th International conference on numerical grid generation in computational field simulations, Proceedings (Waikiki Beach Marriott Resort Honolulu, Hawaii, USA June 2–6, 2002)

[101] 14-th International meshing roundtable, Proceedings (San Diego, USA, 2005), Springer, 2005

[102] 20-th International meshing roundtable, Proceedings (Paris, France, 2011), Springer, 2011