Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2012_45_a6, author = {N. M. Ivochkina}, title = {From {G\aa} rding's cones to $p$-convex hypersurfaces}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {94--104}, publisher = {mathdoc}, volume = {45}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a6/} }
N. M. Ivochkina. From G\aa rding's cones to $p$-convex hypersurfaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 94-104. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a6/
[1] Ivochkina N. M., “Opisanie konusov ustoichivosti, porozhdaemykh differentsialnymi operatorami tipa Monzha–Ampera”, Mat. sb., 122(164):2(10) (1983), 265–275 | MR | Zbl
[2] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, Mat. sb., 128(170):3(11) (1985), 403–415 | MR | Zbl
[3] Ivochkina N. M., “Integralnyi metod barernykh funktsii i zadacha Dirikhle dlya uravnenii s operatorami tipa Monzha–Ampera”, Mat. sb., 112(154):2(6) (1980), 193–206 | MR | Zbl
[4] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya uravnenii krivizny poryadka $m$”, Mat. sb., 180:7 (1989), 867–887 | MR | Zbl
[5] Ivochkina N. M., “Zadacha Dirikhle dlya uravneniya krivizny poryadka $m$”, Algebra i analiz, 2:3 (1990), 192–217 | MR | Zbl
[6] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izv. AN SSSR. Ser. Mat., 47:1 (1983), 75–108 | MR | Zbl
[7] Filimonenkova N. V., “O klassicheskoi razreshimosti zadachi Dirikhle dlya nevyrozhdennykh $m$-gessianovskikh uravnenii”, Probl. mat. analiza, 60, 2011, 89–110
[8] Andrews B., “Contraction of convex hypersurfaces in Euclidian space”, Calc. Var. Partial Differential Equations, 2 (1994), 151–171 | DOI | MR | Zbl
[9] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl
[10] Caffarelli L., Nirenberg L., Spruck J., “Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces”, Commun. Pure Appl. Math., 41 (1988), 47–70 | DOI | MR | Zbl
[11] Caffarelli L., Silvestre L., “Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations”, AMS Transl. Series 2, 229, 2010, 67–85 | MR | Zbl
[12] Dong H., Krylov N. V., Li X., “On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains”, Algebra i analiz, 24:1 (2012), 53–94
[13] Evans L. C., “Classical solutions of fully nonlinear convex second order elliptic equations”, Commun. Pure Appl. Math., 25 (1982), 333–363 | DOI | MR
[14] Gårding L., “An inequality for hyperbolic polynomials”, J. Math. Mech., 8 (1959), 957–965 | MR
[15] Ivochkina N. M., “Geometric evolution equations preserving convexity”, AMS Transl. Series 2, 220, 2007, 191–121 | MR
[16] Ivochkina N. M. Nehring Th., Tomi F., “Evolution of star-shaped hypersurfaces by nonhomogeneous curvature functions”, St. Petersburg Math. J., 12:1 (2001), 145–160 | MR | Zbl
[17] Ivochkina N. M., Trudinger N., Wang X.-J., “The Dirichlet problem for degenerate Hessian equations”, Comm. Partial Differential Equations, 29 (2004), 219–235 | DOI | MR | Zbl
[18] Krylov N. V., Nonlinear elliptic and parabolic equations of second order, Reidel, Dordrecht, 1987 | MR | Zbl
[19] Lin M., Trudinger N., “On some inequalities for elementary symmetric functions”, Bull. Aust. Math. Soc., 50 (1994), 317–326 | DOI | MR | Zbl
[20] Trudinger N. S., “The Dirichlet problem for the prescribed curvature equations”, Arch. Ration. Mech. Anal., 111 (1990), 153–179 | DOI | MR | Zbl
[21] Urbas J., “On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures”, Math. Z., 205 (1990), 355–372 | DOI | MR | Zbl
[22] Urbas J., “An expansion of convex hypersurfaces”, J. Differential Geom., 33 (1991), 91–125 | MR | Zbl