Periodic systems of delay differential equations and avian influenza dynamics
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modelling the spread of avian influenza by migratory birds between the winter refuge ground and the summer breeding site gives rise to a periodic system of delay differential equations exhibiting both the cooperative dynamics (transition between patches) and the predator-prey interaction (disease transmission within a patch). Such a system has two important basic reproductive ratios, each of which being the spectral radius of a monodromy operator associated with the linearized subsystem (at a certain trivial equilibrium): the (ecological) reproduction ratio $R_0^c$ for the birds to survive in the competition between birth and natural death, and the (epidemiological) reproduction ratio $R_0^p$ for the disease to persist. We calculate these two ratios by our recently developed finite-dimensional reduction and asymptotic techniques, and we show how these two ratios characterize the nonlinear dynamics of the full system.
@article{CMFD_2012_45_a2,
     author = {Xiang-Sheng Wang and Jianhong Wu},
     title = {Periodic systems of delay differential equations and avian influenza dynamics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {45},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a2/}
}
TY  - JOUR
AU  - Xiang-Sheng Wang
AU  - Jianhong Wu
TI  - Periodic systems of delay differential equations and avian influenza dynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 32
EP  - 42
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a2/
LA  - ru
ID  - CMFD_2012_45_a2
ER  - 
%0 Journal Article
%A Xiang-Sheng Wang
%A Jianhong Wu
%T Periodic systems of delay differential equations and avian influenza dynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 32-42
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_45_a2/
%G ru
%F CMFD_2012_45_a2
Xiang-Sheng Wang; Jianhong Wu. Periodic systems of delay differential equations and avian influenza dynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 32-42. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a2/

[1] Valter Kh. O., Skubachevskii A. L., “O spektre operatora monodromii dlya medlenno ostsilliruyuschikh periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Dokl. RAN, 384:4 (2002), 442–445 | MR

[2] Valter Kh. O., Skubachevskii A. L., “O multiplikatorakh Floke dlya medlenno ostsilliruyuschikh periodicheskikh reshenii nelineinykh funktsionalno-differentsialnykh uravnenii”, Tr. Mosk. Mat. ob-va, 64, 2002, 3–54

[3] Bourouiba L., Gourley S., Liu R., Wu J., “The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza”, SIAM J. Appl. Math., 71 (2011), 487–516 | DOI | MR | Zbl

[4] Bourouiba L., Wu J., Newman S., Takekawa J., Natdorj T., Batbayar N., Bishop C. M., Hawkes L. A., Butler P. J., Wikelski M., “Spatial dynamics of bar-headed geese migration in the context of H5N1”, J. R. Soc. Interface, 7 (2010), 1627–1639 | DOI

[5] Diekmann O., Heesterbeek J. A. P., Metz J. A. J., “On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations”, J. Math. Biol., 28:4 (1990), 365–382 | DOI | MR | Zbl

[6] Diekmann O., Heesterbeek J. A. P., Roberts M. G., “The construction of next-generation matrices for compartmental epidemic models”, J. R. Soc. Interface, 47 (2010), 873–885 | DOI

[7] Gourley S., Liu R., Wu J., “Spatiotemporal distributions of migratory birds: patchy models with delay”, SIAM J. Appl. Dyn. Syst., 9 (2010), 589–610 | DOI | MR | Zbl

[8] Heffernan J. M., Smith R. J., Wahl L. M., “Perspectives on the basic reproductive ratio”, J. R. Soc. Interface, 47 (2005), 873–885

[9] Smith H. L., Monotone dynamical systems. An introduction to the theory of competitive and cooperative systems, AMS, Providence, 1995 | MR

[10] Van den Driessche P., Watmough J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Math. Biosci., 180 (2002), 29–48 | DOI | MR | Zbl

[11] Wang X.-S., Wu J., “Seasonal migration dynamics: periodicity, transition delay, and finite dimensional reduction”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468:2139 (2012), 634–650 | DOI | MR

[12] Wang X.-S., Wu J., “Approximating periodic patterns and dynamic threshold for patchy model of migratory birds with delay”, Canadian Applied Mathematics Quarterly (to appear)

[13] Wang W., Zhao X.-Q., “Threshold dynamics for compartmental epidemic models in periodic environments”, J. Dynam. Differential Equations, 20:3 (2008), 699–717 | DOI | MR | Zbl

[14] Wu X., Duvvuri V., Lu Y., Ogden N., Wu J., “Investigation of the use of Fourier analysis to estimate development rates and seasonal activity of the tick vector of Lyme Disease Ixodes scapularis”, 2012 (to appear)

[15] Zhao X.-Q., Dynamical systems in population biology, CMS Books in Math., Springer, New York, 2003 | MR