Approximate solution of nonlinear discrete equations of convolution type
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 18-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the method of potential monotone operators we prove global theorems on existence, uniqueness, and ways to find a solution for different classes of nonlinear discrete equations of convolution type with kernels of special form both in weighted and in weightless real spaces $\ell_p$. Using the property of potentiality of the operators under consideration, in the case of space $\ell_2$ and in the case of a weighted space $\ell_p(\varrho)$ with a generic weight $\varrho$ we prove that a discrete equation of convolution type with an odd power nonlinearity has a unique solution and it (the main result) can be found by gradient method.
@article{CMFD_2012_45_a1,
     author = {S. N. Askhabov},
     title = {Approximate solution of nonlinear discrete equations of convolution type},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {45},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Approximate solution of nonlinear discrete equations of convolution type
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 18
EP  - 31
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/
LA  - ru
ID  - CMFD_2012_45_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Approximate solution of nonlinear discrete equations of convolution type
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 18-31
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/
%G ru
%F CMFD_2012_45_a1
S. N. Askhabov. Approximate solution of nonlinear discrete equations of convolution type. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 18-31. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/

[1] Askhabov S. N., Singulyarnye integralnye uravneniya i uravneniya tipa svertki s monotonnoi nelineinostyu, Maikopskii gos. tekhnol. un-t, Maikop, 2004 | MR

[2] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[3] Askhabov S. N., “Primenenie metoda monotonnykh operatorov k nekotorym nelineinym uravneniyam tipa svertki i singulyarnym integralnym uravneniyam”, Izv. vuzov. Ser. Mat., 1981, no. 9, 64–66 | MR | Zbl

[4] Askhabov S. N., Karapetyants N. K., “Diskretnye uravneniya tipa svertki s monotonnoi nelineinostyu”, Diff. uravn., 25:10 (1989), 1777–1784 | MR | Zbl

[5] Askhabov S. N., Karapetyants N. K., “Diskretnye uravneniya tipa svertki s monotonnoi nelineinostyu v kompleksnykh prostranstvakh”, Dokl. RAN, 322:6 (1992), 1015–1018 | MR | Zbl

[6] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956

[7] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR

[8] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[9] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[10] Dedagich F., Zabreiko P. P., “Ob operatorakh superpozitsii v prostranstvakh $\ell_p$”, Sib. mat. zh., 28:1 (1987), 86–98 | MR | Zbl

[11] Kalandiya A. I., Matematicheskie metody dvumernoi uprugosti, Nauka, M., 1978 | MR

[12] Kachurovskii R. I., “Nelineinye monotonnye operatory v banakhovykh prostranstvakh”, Usp. mat. nauk, 23:2 (1968), 121–168 | MR | Zbl

[13] Koppenfels V., Shtalman F., Praktika konformnykh otobrazhenii, IL, M., 1963

[14] Luzin N. N., Integral i trigonometricheskii ryad, GITTL, M., 1951 | MR

[15] Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[16] Crisci M. R., Kolmanovskii V. B., Russo E., Vecchio A., “A priori bounds on the solution of a nonlinear Volterra discrete equation”, Stability and Control: Theory and Appl., 3:1 (2000), 38–47 | MR

[17] Mitrinovic D. S., Pecaric J. E., Fink A. M., Classical and new inequalities in analysis, Mathematics and its Applications, East European Series, 61, Kluwer Acad. Publ., Dordrecht–Boston–London, 1993 | MR | Zbl