Approximate solution of nonlinear discrete equations of convolution type
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 18-31

Voir la notice de l'article provenant de la source Math-Net.Ru

By the method of potential monotone operators we prove global theorems on existence, uniqueness, and ways to find a solution for different classes of nonlinear discrete equations of convolution type with kernels of special form both in weighted and in weightless real spaces $\ell_p$. Using the property of potentiality of the operators under consideration, in the case of space $\ell_2$ and in the case of a weighted space $\ell_p(\varrho)$ with a generic weight $\varrho$ we prove that a discrete equation of convolution type with an odd power nonlinearity has a unique solution and it (the main result) can be found by gradient method.
@article{CMFD_2012_45_a1,
     author = {S. N. Askhabov},
     title = {Approximate solution of nonlinear discrete equations of convolution type},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {45},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Approximate solution of nonlinear discrete equations of convolution type
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 18
EP  - 31
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/
LA  - ru
ID  - CMFD_2012_45_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Approximate solution of nonlinear discrete equations of convolution type
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 18-31
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/
%G ru
%F CMFD_2012_45_a1
S. N. Askhabov. Approximate solution of nonlinear discrete equations of convolution type. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 18-31. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a1/