Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2012_44_a0, author = {V. G. Zvyagin and N. M. Ratiner}, title = {Oriented degree of {Fredholm} maps: finite-dimensional reduction method}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {3--171}, publisher = {mathdoc}, volume = {44}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2012_44_a0/} }
TY - JOUR AU - V. G. Zvyagin AU - N. M. Ratiner TI - Oriented degree of Fredholm maps: finite-dimensional reduction method JO - Contemporary Mathematics. Fundamental Directions PY - 2012 SP - 3 EP - 171 VL - 44 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2012_44_a0/ LA - ru ID - CMFD_2012_44_a0 ER -
V. G. Zvyagin; N. M. Ratiner. Oriented degree of Fredholm maps: finite-dimensional reduction method. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 44 (2012), pp. 3-171. http://geodesic.mathdoc.fr/item/CMFD_2012_44_a0/
[1] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, v. I, Inostrannaya literatura, M., 1962
[2] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR
[3] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979 | Zbl
[4] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, Gl. red. fiz.-mat. lit., M., 1983 | MR | Zbl
[5] Borisovich Yu. G., Bliznyakov N. M., Izrailevich Ya. A., Fomenko T. N., Vvedenie v topologiyu, Vysshaya shkola, M., 1980 | MR | Zbl
[6] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Usp. mat. nauk, 35:4 (1977), 3–54 | MR | Zbl
[7] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[8] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR
[9] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[10] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Mat. zametki, 31:5 (1982), 801–812 | MR | Zbl
[11] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, Gl. red. fiz.-mat. lit., M., 1989 | MR | Zbl
[12] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[13] Zvyagin V. G., Issledovanie topologicheskikh kharakteristik nelineinykh operatorov, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, Voronezh. un-t, Voronezh, 1974
[14] Zvyagin V. G., “O suschestvovanii nepreryvnoi vetvi sobstvennykh funktsii nelineinoi ellipticheskoi kraevoi zadachi”, Diff. uravn., 13:8 (1977), 1524–1527 | MR | Zbl
[15] Zvyagin V. G., “Ob orientirovannoi stepeni odnogo klassa vozmuschenii i bifurkatsii reshenii nelineinoi kraevoi zadachi s nekompaktnymi vozmuscheniyami”, Mat. Sb., 182:12 (1991), 1740–1768 | MR | Zbl
[16] Zvyagin V. G., “O chisle reshenii nekotorykh kraevykh zadach”, Globalnyi analiz i matematicheskaya fizika. Novoe v globalnom analize, 1987, 60–72 | Zbl
[17] Zvyagin V. G., “Stepen fredgolmovykh otobrazhenii, ekvivariantnykh otnositelno deistvii okruzhnosti i tora”, Usp. mat. nauk, 45:2 (1990), 205–206 | MR | Zbl
[18] Zvyagin V. G., “K teorii stepeni ekvivariantnykh $\Phi_0C^1BH$-otobrazhenii”, Dokl. RAN, 364:2 (1999), 155–157 | MR | Zbl
[19] Zvyagin V. G., “O stepeni otobrazhenii, kommutiruyuschikh s $p$-periodicheskimi diffeomorfizmami”, Tr. mat. fak. VGU, 10, 1973, 45–52
[20] Zvyagin V. G., Mukhamadiev E. M., Sapronov Yu. I., “K voprosu vychisleniya stepeni nelineinykh fredgolmovykh otobrazhenii”, Tr. mat. fak. VGU, 10, 1973, 25–44
[21] Zvyagin V. G., Ratiner N. M., “Stepen vpolne nepreryvnykh vozmuschenii fredgolmovykh otobrazhenii i ee prilozhenie k bifurkatsii reshenii”, Dokl. AN USSR. Ser. A. Fiz.-mat. i tekhn. nauki, 1989, no. 6, 2–11 | MR
[22] Kadets M. I., Mityagin B. S., “Dopolnyaemye podprostranstva v banakhovykh prostranstvakh”, Usp. mat. nauk, 28:6(174) (1973), 77–94 | MR | Zbl
[23] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, Gl. red. fiz.-mat. lit., M., 1977 | MR
[24] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl
[25] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968
[26] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Gl. red. fiz.-mat. lit., M., 1972
[27] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, Gl. red. fiz-mat. lit., M., 1975 | MR
[28] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, Gl. red. fiz.-mat. lit., M., 1971 | MR
[29] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Platon, Volgograd, 1996
[30] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi, Mir, M., 1971 | Zbl
[31] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningradskogo un-ta, L., 1985 | MR
[32] Mankrs Dzh., “Elementarnaya differentsialnaya topologiya”, Dopolnenie v kn.: Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979, 270–359 | MR
[33] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl
[34] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957
[35] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[36] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[37] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR
[38] Ratiner N. M., “K teorii stepeni fredgolmovykh otobrazhenii mnogoobrazii”, Uravneniya na mnogoobraziyakh. Novoe v globalnom analize, Voronezh, 1982, 126–129 | MR | Zbl
[39] Ratiner N. M., “O primenenii teorii stepeni k issledovaniyu odnoi zadachi s naklonnoi proizvodnoi”, Izv. vuzov. Matematika, 2001, no. 4(467), 43–52 | MR | Zbl
[40] Ratiner N. M., O razreshimosti nelineinoi kraevoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii vtorogo poryadka, Dep. v VINITI No 5407-85 Dep., 1985
[41] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl
[42] Sapronov Yu. I., “K teorii stepeni nelineinykh fredgolmovykh otobrazhenii”, Trudy NII matematiki VGU, 11, Voronezh, 1973, 92–101 | MR
[43] Sapronov Yu. I., “O lokalnoi obratimosti nelineinykh fredgolmovykh otobrazhenii”, Funkts. analiz. i ego prilozh., 5:4 (1971), 38–43 | MR | Zbl
[44] Sapronov Yu. I., “Regulyarnye vozmuscheniya fredgolmovykh otobrazhenii i teorema o nechetnom pole”, Trudy mat. fak. VGU, 10, 1973, 82–88 | MR
[45] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningradskogo gos. un-ta, L., 1950 | MR
[46] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[47] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004
[48] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR
[49] Faddeev D. K., Vulikh B. Z., Uraltseva N. N. i dr., Izbrannye glavy analiza i vysshei algebry, Ucheb. posobie, Izd-vo Leningr. un-ta, L., 1981 | Zbl
[50] Chernavskii A. V, Matveev S. V., Osnovy topologii mnogoobrazii, Kubanskii gos. un-t, Krasnodar, 1974 | MR
[51] Shubin M. A., Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, M., 2003
[52] Shvarts A. S., “Gomotopicheskaya topologiya banakhovykh prostranstv”, Dokl. AN SSSR, 154:1 (1964), 61–63 | Zbl
[53] Evans L. K., Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003
[54] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[55] Arlt D., “Zusammenziehbarkeit der allgemeinen linearen Gruppe des Raumes $c_0$ der Nullfolgen”, Invent. Math., 1 (1966), 36–44 | DOI | MR | Zbl
[56] Berkson E., “Some metrics on the subspaces of a Banach space”, Pacific J. Math., 13 (1963), 7–22 | MR | Zbl
[57] Benevieri P., Furi M., “A simple notion of orientablity for Fredholm maps of index zero between Banach manifolds and degree theory”, Ann. Sci. Math. Quebec, 22:2 (1998), 131–148 | MR | Zbl
[58] Benevieri P., Furi M., “On the concept of orientability for Fredholm maps betweeen real Banach manifolds”, Topol. Methods Nonlinear Anal., 16 (2000), 279–306 | MR | Zbl
[59] Benevieri P., Furi M., “A degree theory for locally compact perturbations of Fredholm maps in Banach spaces”, Abstr. Appl. Anal., 2006 (2006), Art. ID 64764 | MR
[60] Bonic R., Frampton J., “Smooth functions on Banach manifolds”, J. Math. Mech., 15:3 (1966), 877–897 | MR
[61] Caccioppoli R., “Sulle corrispondenze funzionali inverse diramate: teoria generale e applicazioni ad alcune equazioni non lineari e al problema di Plateau. I”, Atti Accad. naz. Lincei Rend. Cl. Sci. fis. mat. nat. (6), 24 (1937), 258–263 | Zbl
[62] Douady A., “Un espace de Banach dont le groupe linéaire n'est pas connexe”, Indag. Math., 68 (1965), 787–789 | MR | Zbl
[63] Eells J., Elworthy K. D., “Open embeddings of certain Banach manifolds”, Ann. of Math., 91:3 (1970), 465–485 | DOI | MR | Zbl
[64] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Proc. Sympos. Pure Math. (Global Analysis), 15 (1970), 45–94 | MR | Zbl
[65] Elworthy K. D., Tromba A. J., “Degree theory on Banach manifolds”, Proc. Sympos. Pure Math., 18 (1970), 86–94 | MR | Zbl
[66] Fichtengoltz G., Kantorovitch L., “Sur les opérations dans l'espace des fonctions bornées”, Studia Math., 5 (1934), 69–98
[67] Fitzpatric P. M., Pejsachovicz J., Rabier P. J., “The degree of proper $C^2$-Fredholm mappings. I”, J. Reine Angew. Math., 427 (1992), 1–33 | MR | Zbl
[68] Gȩba K., “On the Homotopy Groups of $GL_c(E)$”, Bull. de L'Académie Polonaise des sciences. Série des sciences math., astr. et phys., 16:9 (1968), 699–702 | MR
[69] Isnard C. A., “The topological degree on Banach manifolds”, Global Analysis and its Applications, Internat. Summer Course (Trieste, 1972), v. 2, IAEA, Vienna, 1974, 291–313 | MR
[70] Kuiper N. H., “The homotopy type of the unitary group of Hilbert space”, Topology, 3 (1965), 19–30 | DOI | MR | Zbl
[71] Leach E. B., Whitfield J. H. M., “Differentiable functions and rough norms on Banach spaces”, Proc. Amer. Math. Soc., 33:1 (1972), 120–126 | DOI | MR | Zbl
[72] Leray J., Schauder J., “Topologie et équations fonctionnelles”, Ann. Sci. Ecole Norm. Sup. Ser. 3, 51 (1934), 45–78 ; Lerei Zh., Shauder Zh. , “Topologiya i funktsionalnye uravneniya”, UMN, 1:3–4 (1946), 71–95 | MR | Zbl | MR | Zbl
[73] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, A Ser. of Mod. Sur. in Math., 92, no. 13, Springer Verlag, Berlin–Heldelberg–New York, 1977 | MR | Zbl
[74] Mawhin J., “A Leray–Schauder degree: a half century of extension and applications”, Topol. Meth. Nonlin. Anal., 14 (1999), 195–228 | MR | Zbl
[75] Neubauer G., On a class of sequence spaces with contractible linear group, Notes, University of California, Berkeley, 1957
[76] Peetre J., “Another approach to elliptic boundary problems”, Comm. Pure Appl. Math., 14 (1961), 711–731 ; Zh. Petre, “O novom podkhode k granichnym zadacham dlya ellipticheskikh uravnenii”, Sb. “Matematika”, 7:1 (1963) | DOI | MR | Zbl
[77] Pejsachowicz J., Rabier P. J., “Degree theory for $C^1$ Fredholm mappings of index 0”, J. Anal. Math., 76 (1998), 289–319 | DOI | MR | Zbl
[78] Rabier P. J., Salter M. F., “A degree theory for compact perturbations of proper $C^1$ Fredholm mappings of index 0”, Abstr. Appl. Anal., 2005:7 (2005), 707–731 | DOI | MR | Zbl
[79] Rabinowitz P. H., “A global theorem for nonlinear eigenvalue problems and applications”, Contrib. Nonlin. Funct. Anal., Proc. Sympos. Univ. Wisconsin (Madison, 1971), Academic Press, 1971, 11–36 | MR
[80] Restrepo G., “Differentiable norms in Banach spaces”, Bull. Amer. Math. Soc., 70 (1964), 413–414 | DOI | MR | Zbl
[81] Sard A., “The measure of the critical values of differentiable maps”, Bull. Amer. Math. Soc., 48 (1942), 883–890 | DOI | MR | Zbl
[82] Smale S., “An infinite dimentional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–867 | DOI | MR
[83] Tromba A. J., On the number of simply connected minimal surfaces spanning a curve, Mem. Amer. Math. Soc., 12, no. 194, 1977 | MR | Zbl
[84] Tromba A. J., “Degree theory on oriented infinite dimensional varieties and Morse number of minimal surfaces. Part I: $n>4$”, Trans. Amer. Math. Soc., 290:1 (1985), 385–413 | MR | Zbl
[85] Zvyagin V. G., Ratiner N. M., “Oriented degree of Fredholm maps of non-negative index and its applications to global bifurcation of solutions”, Lecture Notes in Math., 1520, 1992, 111–137 | DOI | MR