On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 82-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Cauchy problem for a chain of Bogolyubov equations of an infinite one-dimensional symmetric particle system, where the particles interact with each other by a finite-range pair potential with a hard core. We consider it in the space of sequences of bounded measurable functions. Based on the proposed method of a joint interval for estimates of the volume of the interaction domain and on the derived estimate itself we find a representation of a weak local with respect to time solution in the form of a cumulant expansion. We prove that the considered weak local with respect to time solution is an equilibrium solution if the initial data are equilibrium distribution functions.
@article{CMFD_2011_42_a8,
     author = {G. N. Gubal'},
     title = {On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of {Bogolyubov's} equations of a~one-dimensional symmetric particle system},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/}
}
TY  - JOUR
AU  - G. N. Gubal'
TI  - On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 82
EP  - 94
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/
LA  - ru
ID  - CMFD_2011_42_a8
ER  - 
%0 Journal Article
%A G. N. Gubal'
%T On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 82-94
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/
%G ru
%F CMFD_2011_42_a8
G. N. Gubal'. On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 82-94. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 | MR

[2] Gerasimenko V. I., Ryabukha T. V., “Kumulyantnoe izobrazhenie reshenii tsepochek uravnenii Bogolyubova”, Ukr. mat. zhurn., 54:10 (2002), 1313–1328 | MR | Zbl

[3] Gubal G. N., Stashenko M. A., “Ob uluchshenii otsenki globalnoi teoremy suschestvovaniya resheniya uravnenii Bogolyubova”, Teoret. i mat. fizika, 145:3 (2005), 420–424 | MR | Zbl

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[5] Petrina D. Ya., Gerasimenko V. I., “Matematicheskoe opisanie evolyutsii sostoyaniya beskonechnykh sistem klassicheskoi statisticheskoi mekhaniki”, Uspekhi mat. nauk, 38:5 (1983), 3–58 | MR | Zbl

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR

[7] Stashenko M. A., Gubal G. N., “O teoremakh suschestvovaniya resheniya nachalnoi zadachi dlya tsepochki uravnenii Bogolyubova v prostranstve posledovatelnostei ogranichennykh funktsii”, Sib. mat. zhurn., 47:1 (2006), 188–205 | MR | Zbl

[8] Cercignani C., Gerasimenko V. I., Petrina D. Ya., Many-particle dynamics and kinetic equations, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[9] Gerasimenko V. I., Ryabukha T. V., Stashenko M. O., “On the structure of expansions for the BBGKY hierarchy solutions”, J. Phys. A, 37:42 (2004), 9861–9872 | DOI | MR | Zbl

[10] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Mathematical foundations of classical statistical mechanics. Continuous systems, Taylor and Francis, London, 2002 | MR | Zbl

[11] Ryabukha T. V., “On regularized solution for BBGKY hierarchy of one-dimensional infinite system”, SIGMA, 2 (2006), Paper 053 | MR | Zbl

[12] Stashenko M. O., Hubal H. M., “On the property of the BBGKY hierarchy solution in a cumulant representation”, Opuscula Mathematica, 29:2 (2009), 209–216 | MR | Zbl