Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a8, author = {G. N. Gubal'}, title = {On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of {Bogolyubov's} equations of a~one-dimensional symmetric particle system}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {82--94}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/} }
TY - JOUR AU - G. N. Gubal' TI - On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 82 EP - 94 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/ LA - ru ID - CMFD_2011_42_a8 ER -
%0 Journal Article %A G. N. Gubal' %T On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system %J Contemporary Mathematics. Fundamental Directions %D 2011 %P 82-94 %V 42 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/ %G ru %F CMFD_2011_42_a8
G. N. Gubal'. On the existence of weak local in time solutions in the form of a~cumulant expansion for a~chain of Bogolyubov's equations of a~one-dimensional symmetric particle system. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 82-94. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a8/
[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 | MR
[2] Gerasimenko V. I., Ryabukha T. V., “Kumulyantnoe izobrazhenie reshenii tsepochek uravnenii Bogolyubova”, Ukr. mat. zhurn., 54:10 (2002), 1313–1328 | MR | Zbl
[3] Gubal G. N., Stashenko M. A., “Ob uluchshenii otsenki globalnoi teoremy suschestvovaniya resheniya uravnenii Bogolyubova”, Teoret. i mat. fizika, 145:3 (2005), 420–424 | MR | Zbl
[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[5] Petrina D. Ya., Gerasimenko V. I., “Matematicheskoe opisanie evolyutsii sostoyaniya beskonechnykh sistem klassicheskoi statisticheskoi mekhaniki”, Uspekhi mat. nauk, 38:5 (1983), 3–58 | MR | Zbl
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR
[7] Stashenko M. A., Gubal G. N., “O teoremakh suschestvovaniya resheniya nachalnoi zadachi dlya tsepochki uravnenii Bogolyubova v prostranstve posledovatelnostei ogranichennykh funktsii”, Sib. mat. zhurn., 47:1 (2006), 188–205 | MR | Zbl
[8] Cercignani C., Gerasimenko V. I., Petrina D. Ya., Many-particle dynamics and kinetic equations, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[9] Gerasimenko V. I., Ryabukha T. V., Stashenko M. O., “On the structure of expansions for the BBGKY hierarchy solutions”, J. Phys. A, 37:42 (2004), 9861–9872 | DOI | MR | Zbl
[10] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Mathematical foundations of classical statistical mechanics. Continuous systems, Taylor and Francis, London, 2002 | MR | Zbl
[11] Ryabukha T. V., “On regularized solution for BBGKY hierarchy of one-dimensional infinite system”, SIGMA, 2 (2006), Paper 053 | MR | Zbl
[12] Stashenko M. O., Hubal H. M., “On the property of the BBGKY hierarchy solution in a cumulant representation”, Opuscula Mathematica, 29:2 (2009), 209–216 | MR | Zbl