Hypoelliptic heat kernel over $3$-step nilpotent Lie groups
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 48-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we provide explicitly the connection between the hypoelliptic heat kernel for some $3$-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-Riemannian structure on two nilpotent Lie groups, namely, the (2,3,4) group (called the Engel group) and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique is noncommutative Fourier analysis, which permits us to transform the hypoelliptic heat equation into a one-dimensional heat equation with a quartic potential.
@article{CMFD_2011_42_a5,
     author = {U. Boscain and J.-P. Gauthier and F. Rossi},
     title = {Hypoelliptic heat kernel over $3$-step nilpotent {Lie} groups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/}
}
TY  - JOUR
AU  - U. Boscain
AU  - J.-P. Gauthier
AU  - F. Rossi
TI  - Hypoelliptic heat kernel over $3$-step nilpotent Lie groups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 48
EP  - 61
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/
LA  - ru
ID  - CMFD_2011_42_a5
ER  - 
%0 Journal Article
%A U. Boscain
%A J.-P. Gauthier
%A F. Rossi
%T Hypoelliptic heat kernel over $3$-step nilpotent Lie groups
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 48-61
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/
%G ru
%F CMFD_2011_42_a5
U. Boscain; J.-P. Gauthier; F. Rossi. Hypoelliptic heat kernel over $3$-step nilpotent Lie groups. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 48-61. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/

[1] Ardentov A. A., Sachkov Yu. L., “Ekstremalnye traektorii v nilpotentnoi subrimanovoi zadache na gruppe Engelya”, Mat. sb., 202:11 (2011), 31–54

[2] Agrachev A., Boscain, U. Gauthier J-P., Rossi F., “The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups”, Journal of Functional Analysis, 256 (2009), 2621–2655 | DOI | MR | Zbl

[3] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl

[4] Beals R., Gaveau B., Greiner P., “Hamilton–Jacobi theory and the heat kernel on Heisenberg groups”, J. Math. Pures Appl., 9:79 (2000), 633–689 | MR | Zbl

[5] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Progr. Math., 144 (1996), 1–78 | MR | Zbl

[6] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Berlin, 2007 | MR

[7] Boscain U., Polidoro S., “Gaussian estimates for hypoelliptic operators via optimal control”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18:4 (2007), 333–342 | DOI | MR | Zbl

[8] Chirikjian G. S., Kyatkin A. B., Engineering applications of noncommutative harmonic analysis, CRC Press, Boca Raton, 2001 | MR | Zbl

[9] Christ M., “Nonexistence of invariant analytic hypoelliptic differential operators on nilpotent groups of step greater than two”, Princeton Math. Ser., 42, 1995, 127–145 | MR | Zbl

[10] Cygan J., “Heat kernels for class 2 nilpotent groups”, Studia Math., 64:3 (1979), 227–238 | MR | Zbl

[11] Delabaere E., Pham F., “Unfolding the quartic oscillator”, Ann. Physics, 261:2 (1997), 180–218 | DOI | MR | Zbl

[12] Dixmier J., “Sur les représentations unitaires des groupes de Lie algébriques”, Ann. Inst. Fourier (Grenoble), 7 (1957), 315–328 | DOI | MR | Zbl

[13] Dixmier J., “Sur les représentations unitaries des groupes de Lie nilpotents. III”, Canad. J. Math., 10 (1958), 321–348 | DOI | MR | Zbl

[14] Dixmier J., “Sur les représentations unitaires des groupes de Lie nilpotents. I”, Amer. J. Math., 81 (1959), 160–170 | DOI | MR | Zbl

[15] Duflo M., “Analyse harmonique sur les groupes algébriques complexes: formule de Plancherel (d'après M. Andler) et conjecture de M. Vergne”, Bourbaki seminar, 1982/83, 1983, 279–291 | MR | Zbl

[16] Duits R., Franken E., Left-invariant stochastic evolution equations on SE(2) and its applications to contour enhancement and contour completion via invertible orientation scores, CASA repor, 35, 2007, arXiv: 0711.0951

[17] Folland G. B., Stein E. M., “Estimates for the $\bar\partial_b$ complex and analysis on the Heisenberg group”, Comm. Pure Appl. Math., 24 (1974), 429–522 | DOI | MR

[18] Gaveau B., “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents”, Acta Math., 139:1–2 (1977), 95–153 | DOI | MR | Zbl

[19] Greiner P., On Carnot-Caratheodory Geometry, Partial Differential Equations and the Quartic Oscillator, ISAAC Workshop on pseudo-differential operators: partial differential equations and time–frequency analysis http://www.fields.utoronto.ca/audio/06-07/ISAAC/greiner/

[20] Gromov M., “Carnot–Caratheodory spaces seen from within”, Progr. Math., 144 (1996), 79–323 | MR | Zbl

[21] Harish-Chandra, “Representations of a semisimple Lie group on a Banach space. I”, Trans. Amer. Math. Soc., 75 (1953), 185–243 | DOI | MR | Zbl

[22] Hewitt E., Ross K. A., Abstract harmonic analysis, v. II, Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York–Berlin, 1970 | MR | Zbl

[23] Hewitt E., Ross K. A., Abstract harmonic analysis, v. I, Structure of topological groups, integration theory, group representations, Second edition, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[24] Hulanicki A., “The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group”, Studia Math., 56:2 (1976), 165–173 | MR | Zbl

[25] Hörmander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR

[26] Kirillov A. A., Elements of the theory of representations, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[27] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, AMS, Providence, 2002 | MR

[28] Rothschild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR

[29] Sachkov Yu. L., “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[30] Sachkov Yu. L., “Complete description of Maxwell strata in the generalized Dido problem”, Mat. Sb., 197:6 (2006), 111–160 | MR | Zbl

[31] Skála L. et al., “Analytic solutions of the Schrödinger equation for the modified quartic oscillator”, Internat. J. Theoret. Phys., 36:12 (1997), 2953–2961 | DOI | MR | Zbl

[32] Taylor M. E., Noncommutative harmonic analysis, AMS, Providence, 1986 | MR

[33] Trèves F., “Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the $\bar\partial$-Neumann problem”, Comm. Partial Differential Equations, 3 (1978), 475–642 | DOI | MR | Zbl

[34] Varopoulos N., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[35] Zhu F., “The heat kernel and the Riesz transforms on the quaternionic Heisenberg groups”, Pacific J. Math., 9:1 (2003), 175–199 | DOI | MR

[36] Zhu F., Yang Q., “Heat kernels and Hardy's uncertainty principle on H-type groups”, Acta Math. Sci. Ser. B Engl. Ed., 28:1 (2008), 171–178 | DOI | MR | Zbl