Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a5, author = {U. Boscain and J.-P. Gauthier and F. Rossi}, title = {Hypoelliptic heat kernel over $3$-step nilpotent {Lie} groups}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {48--61}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/} }
TY - JOUR AU - U. Boscain AU - J.-P. Gauthier AU - F. Rossi TI - Hypoelliptic heat kernel over $3$-step nilpotent Lie groups JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 48 EP - 61 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/ LA - ru ID - CMFD_2011_42_a5 ER -
U. Boscain; J.-P. Gauthier; F. Rossi. Hypoelliptic heat kernel over $3$-step nilpotent Lie groups. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 48-61. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a5/
[1] Ardentov A. A., Sachkov Yu. L., “Ekstremalnye traektorii v nilpotentnoi subrimanovoi zadache na gruppe Engelya”, Mat. sb., 202:11 (2011), 31–54
[2] Agrachev A., Boscain, U. Gauthier J-P., Rossi F., “The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups”, Journal of Functional Analysis, 256 (2009), 2621–2655 | DOI | MR | Zbl
[3] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl
[4] Beals R., Gaveau B., Greiner P., “Hamilton–Jacobi theory and the heat kernel on Heisenberg groups”, J. Math. Pures Appl., 9:79 (2000), 633–689 | MR | Zbl
[5] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Progr. Math., 144 (1996), 1–78 | MR | Zbl
[6] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Berlin, 2007 | MR
[7] Boscain U., Polidoro S., “Gaussian estimates for hypoelliptic operators via optimal control”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18:4 (2007), 333–342 | DOI | MR | Zbl
[8] Chirikjian G. S., Kyatkin A. B., Engineering applications of noncommutative harmonic analysis, CRC Press, Boca Raton, 2001 | MR | Zbl
[9] Christ M., “Nonexistence of invariant analytic hypoelliptic differential operators on nilpotent groups of step greater than two”, Princeton Math. Ser., 42, 1995, 127–145 | MR | Zbl
[10] Cygan J., “Heat kernels for class 2 nilpotent groups”, Studia Math., 64:3 (1979), 227–238 | MR | Zbl
[11] Delabaere E., Pham F., “Unfolding the quartic oscillator”, Ann. Physics, 261:2 (1997), 180–218 | DOI | MR | Zbl
[12] Dixmier J., “Sur les représentations unitaires des groupes de Lie algébriques”, Ann. Inst. Fourier (Grenoble), 7 (1957), 315–328 | DOI | MR | Zbl
[13] Dixmier J., “Sur les représentations unitaries des groupes de Lie nilpotents. III”, Canad. J. Math., 10 (1958), 321–348 | DOI | MR | Zbl
[14] Dixmier J., “Sur les représentations unitaires des groupes de Lie nilpotents. I”, Amer. J. Math., 81 (1959), 160–170 | DOI | MR | Zbl
[15] Duflo M., “Analyse harmonique sur les groupes algébriques complexes: formule de Plancherel (d'après M. Andler) et conjecture de M. Vergne”, Bourbaki seminar, 1982/83, 1983, 279–291 | MR | Zbl
[16] Duits R., Franken E., Left-invariant stochastic evolution equations on SE(2) and its applications to contour enhancement and contour completion via invertible orientation scores, CASA repor, 35, 2007, arXiv: 0711.0951
[17] Folland G. B., Stein E. M., “Estimates for the $\bar\partial_b$ complex and analysis on the Heisenberg group”, Comm. Pure Appl. Math., 24 (1974), 429–522 | DOI | MR
[18] Gaveau B., “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents”, Acta Math., 139:1–2 (1977), 95–153 | DOI | MR | Zbl
[19] Greiner P., On Carnot-Caratheodory Geometry, Partial Differential Equations and the Quartic Oscillator, ISAAC Workshop on pseudo-differential operators: partial differential equations and time–frequency analysis http://www.fields.utoronto.ca/audio/06-07/ISAAC/greiner/
[20] Gromov M., “Carnot–Caratheodory spaces seen from within”, Progr. Math., 144 (1996), 79–323 | MR | Zbl
[21] Harish-Chandra, “Representations of a semisimple Lie group on a Banach space. I”, Trans. Amer. Math. Soc., 75 (1953), 185–243 | DOI | MR | Zbl
[22] Hewitt E., Ross K. A., Abstract harmonic analysis, v. II, Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York–Berlin, 1970 | MR | Zbl
[23] Hewitt E., Ross K. A., Abstract harmonic analysis, v. I, Structure of topological groups, integration theory, group representations, Second edition, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[24] Hulanicki A., “The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group”, Studia Math., 56:2 (1976), 165–173 | MR | Zbl
[25] Hörmander L., “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR
[26] Kirillov A. A., Elements of the theory of representations, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[27] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, AMS, Providence, 2002 | MR
[28] Rothschild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR
[29] Sachkov Yu. L., “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl
[30] Sachkov Yu. L., “Complete description of Maxwell strata in the generalized Dido problem”, Mat. Sb., 197:6 (2006), 111–160 | MR | Zbl
[31] Skála L. et al., “Analytic solutions of the Schrödinger equation for the modified quartic oscillator”, Internat. J. Theoret. Phys., 36:12 (1997), 2953–2961 | DOI | MR | Zbl
[32] Taylor M. E., Noncommutative harmonic analysis, AMS, Providence, 1986 | MR
[33] Trèves F., “Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the $\bar\partial$-Neumann problem”, Comm. Partial Differential Equations, 3 (1978), 475–642 | DOI | MR | Zbl
[34] Varopoulos N., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[35] Zhu F., “The heat kernel and the Riesz transforms on the quaternionic Heisenberg groups”, Pacific J. Math., 9:1 (2003), 175–199 | DOI | MR
[36] Zhu F., Yang Q., “Heat kernels and Hardy's uncertainty principle on H-type groups”, Acta Math. Sci. Ser. B Engl. Ed., 28:1 (2008), 171–178 | DOI | MR | Zbl