Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a22, author = {E. V. Shevkoplyas}, title = {Optimal solutions in differential games with random duration}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {235--243}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a22/} }
E. V. Shevkoplyas. Optimal solutions in differential games with random duration. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 235-243. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a22/
[1] Gavrilov L. A., Gavrilova N. S., Biologiya prodolzhitelnosti zhizni, Nauka, M., 1991
[2] Matveevskii V. R., Nadezhnost tekhnicheskikh sistem, MIEM, M., 2002
[3] Petrosyan L. A., Murzov N. V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, 6:3 (1966), 423–433
[4] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestnik SPbGU, ser. 1, 2000, no. 4, 18–23 | MR | Zbl
[5] Khenli E. Dzh., Kumamoto Kh., Nadezhnost tekhnicheskikh sistem i otsenki riska, Mashinostroenie, M., 1996
[6] Shevkoplyas E. V., Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, SPbGU, SPb., 2004
[7] Shevkoplyas E. V., “O postroenii kharakteristicheskoi funktsii v kooperativnykh differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Trudy Mezhd. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, posvyaschennogo 60-letiyu akademika A. I. Subbotina, Uralskii un-t, Ekaterinburg, 2006, 285–293
[8] Shevkoplyas E. V., “Uravnenie Gamiltona–Yakobi–Bellmana v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Upravlenie bolshimi sistemami, 26.1, 2009, 385–408
[9] Boukas E. K., Haurie A., Michel P., “An optimal control problem with a random stopping time”, Journal of optimization theory and applications, 64:3 (1990), 471–480 | DOI | MR | Zbl
[10] Chang F. R., Stochastic optimization in continuous time, Cambridge Univ. Press, Cambridge, 2004 | MR
[11] Dockner E. J., Jorgensen S., van Long N., Sorger G., Differential games in economics and management science, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[12] Haurie A., “A multigenerational game model to analyze sustainable development”, Annals of Operations Research, 137:1 (2005), 369–386 | DOI | MR | Zbl
[13] Karp L., “Non-constant discounting in continuous time”, Journal of Economic Theory, 132 (2007), 557–568 | DOI | MR | Zbl
[14] Marín-Solano J., Navas J., “Non-constant discounting in finite horizon: the free terminal time case”, Journal of Economic Dynamics and Control, 33 (2009), 666–675 | DOI | MR | Zbl
[15] Stuart Burness H., “A note on consistent naive intertemporal decision making and an application to the case of uncertain lifetime”, The Review of Economic Studies, 43:3 (1976), 547–549 | DOI | MR | Zbl
[16] Yaari M. E., “Uncertain lifetime, life insurance, and the theory of the consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI