A synthesis of the control of dynamical systems on the basis of the method of Lyapunov functions
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 23-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the synthesis of a bounded control reducing a dynamical system to the given terminal state in a finite time. Two approaches to solve the problem, based on methods of the theory of stability of motion, are provided. One of them is applicable to nonlinear Lagrange mechanical systems with undetermined parameters, while another is applicable to linear systems. The characteristic property is that the Lyapunov functions are defined implicitly in both cases. We make a comparison between these approaches.
@article{CMFD_2011_42_a2,
     author = {I. M. Anan'evskii},
     title = {A synthesis of the control of dynamical systems on the basis of the method of {Lyapunov} functions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a2/}
}
TY  - JOUR
AU  - I. M. Anan'evskii
TI  - A synthesis of the control of dynamical systems on the basis of the method of Lyapunov functions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 23
EP  - 29
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a2/
LA  - ru
ID  - CMFD_2011_42_a2
ER  - 
%0 Journal Article
%A I. M. Anan'evskii
%T A synthesis of the control of dynamical systems on the basis of the method of Lyapunov functions
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 23-29
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a2/
%G ru
%F CMFD_2011_42_a2
I. M. Anan'evskii. A synthesis of the control of dynamical systems on the basis of the method of Lyapunov functions. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 23-29. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a2/

[1] Ananevskii I. M., “Nepreryvnoe upravlenie po obratnoi svyazi vozmuschennymi mekhanicheskimi sistemami”, PMM, 67:2 (2003), 163–178 | MR

[2] Korobov V. I., “Obschii podkhod k resheniyu zadachi sinteza ogranichennykh upravlenii v zadache upravlyaemosti”, Matem. sbornik, 109(151):4(8) (1979), 582–606 | MR | Zbl

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl