Method of characteristics for optimal control problems and conservation laws
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 204-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, notions of global generalized solutions of Cauchy problems for the Hamilton–Jacobi–Bellman equation and for a quasilinear equation (a conservation law) are introduced in terms of characteristics of the Hamilton–Jacobi equation. Theorems on the existence and uniqueness of generalized solutions are proved. Representative formulas for generalized solutions are obtained and a relation between generalized solutions of the mentioned problems is justified. These results tie nonlinear scalar optimal control problems and one-dimensional stationary conservation laws.
@article{CMFD_2011_42_a19,
     author = {N. N. Subbotina and E. A. Kolpakova},
     title = {Method of characteristics for optimal control problems and conservation laws},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {204--210},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a19/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - E. A. Kolpakova
TI  - Method of characteristics for optimal control problems and conservation laws
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 204
EP  - 210
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a19/
LA  - ru
ID  - CMFD_2011_42_a19
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A E. A. Kolpakova
%T Method of characteristics for optimal control problems and conservation laws
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 204-210
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a19/
%G ru
%F CMFD_2011_42_a19
N. N. Subbotina; E. A. Kolpakova. Method of characteristics for optimal control problems and conservation laws. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 204-210. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a19/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[2] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. Akad. nauk SSSR, 95 (1954), 451–454 | MR

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1968

[4] Pshenichnyi B. N., “Igra s prostymi dvideniyami i vypuklym terminalnym mnozhestvom”, Trudy seminara “Teoriya optimalnykh reshenii”, 16, no. 3, Institut Kibernetiki AN USSR, Kiev, 1969, 3–16

[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR

[6] Subbotin A. I., Obobschennye resheniya uravneniya v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003

[7] Subbotina N. N., Kolpakova E. A., “O strukture lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona–Yakobi–Bellmana v terminakh klassicheskikh kharakteristik”, Trudy instituta matematiki i mekhaniki, 15, no. 3, 2009, 202–218

[8] Crandall M. G., Ishii H., Lions P. L., “Uniqueness of viscosity solutions revisited”, J. Math. Soc. Japan, 39 (1987), 581–596 | DOI | MR | Zbl

[9] Evans L. C., Partial differential equations, American Mathematical Society, Providence, 2010 | MR

[10] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and Its Applications, 20 (2004), 2955–3091 | MR