Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a14, author = {A. P. Mashtakov}, title = {Asymptotics of extremal curves in the ball rolling problem on the plane}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {158--165}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a14/} }
TY - JOUR AU - A. P. Mashtakov TI - Asymptotics of extremal curves in the ball rolling problem on the plane JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 158 EP - 165 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a14/ LA - ru ID - CMFD_2011_42_a14 ER -
A. P. Mashtakov. Asymptotics of extremal curves in the ball rolling problem on the plane. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 158-165. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a14/
[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[2] Arnold V. I., Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2002
[3] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M.-L., 1935
[4] Sachkov Yu. L., “Simmetrii i straty Maksvella v zadache ob optimalnom kachenii sfery po ploskosti”, Matematicheskii sbornik, 201:7 (2010), 99–120 | Zbl
[5] Eiler L., “Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma ili minimuma, ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle”, Peterburgskoi Akademii Nauk, Prilozhenie I, “Ob uprugikh krivykh”, GTTI, Moskva–Leningrad, 1934, 447–572
[6] Arthur A. M., Walsh G. R., “On the Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 529–534 | DOI | MR | Zbl
[7] Bicchi A., Prattichizzo D., Sastry S., “Planning motions of rolling surfaces”, IEEE Conf. on Decision and Control, 1995
[8] Jurdjevic V., “The geometry of the plate-ball problem”, Arch. Rat. Mech. Anal., 124 (1986), 305–328 | DOI | MR
[9] Hammersley J. M., “Oxford commemoration ball”, London Math. Soc. Lecture Note Ser., 79, 1983, 112–142 | MR | Zbl
[10] Laumond J. P., Nonholonomic motion planning for mobile robots, LAAS Report 98211, LAAS–CNRS, Toulouse, France, May, 1998
[11] Li Z., Canny J., “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1983), 62–72
[12] Marigo A., Bicchi A., “Rolling bodies with regular surface: the holonomic case”, Proc. Sympos. Pure Math., 64 (1999), 241–256 | MR | Zbl