Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work it is shown that if certain natural conditions of community of position hold, then critical points of the local controllability set for a $2$-parameter family of $2$-systems on a plane near the point with zero indicatrix of the velocity are well defined by first derivatives of fields of the family at the point. A method to construct this set near such a point is given.
@article{CMFD_2011_42_a12,
     author = {M. A. Komarov},
     title = {Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--151},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 134
EP  - 151
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
LA  - ru
ID  - CMFD_2011_42_a12
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 134-151
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
%G ru
%F CMFD_2011_42_a12
M. A. Komarov. Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/

[1] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR

[2] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. Sb., 136(178):4 (1988), 478–499 | MR | Zbl

[3] Davydov A. A., Komarov M. A., “Bifurkatsii lokalnoi upravlyaemosti v semeistvakh bidinamicheskikh sistem na ploskosti”, Trudy MIAN, 261, 2008, 87–96 | MR

[4] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Trudy VlGU, 2007, no. 3, 66–75

[5] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Uspekhi matem. nauk, 63:2 (2008), 173–174 | MR | Zbl

[6] Komarov M. A., Osobennosti lokalnoi upravlyaemosti semeistv polisistem na poverkhnostyakh, Diss. $\dots$ kand. fiz.-mat. nauk, Vladimir, 2009

[7] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl

[8] Petrov N. N., “Reshenie odnoi zadachi teorii upravlyaemosti”, Differents. uravneniya, 5:5 (1969), 962–963 | Zbl

[9] Bushaw D., “Dynamical polysystems and optimization”, Contributions to Differential Equations, 2 (1963), 351–365 | MR | Zbl

[10] Sussmann H. J., “A general theorem on local controllability”, SIAM J. Control Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl