Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work it is shown that if certain natural conditions of community of position hold, then critical points of the local controllability set for a $2$-parameter family of $2$-systems on a plane near the point with zero indicatrix of the velocity are well defined by first derivatives of fields of the family at the point. A method to construct this set near such a point is given.
@article{CMFD_2011_42_a12,
     author = {M. A. Komarov},
     title = {Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--151},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 134
EP  - 151
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
LA  - ru
ID  - CMFD_2011_42_a12
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 134-151
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
%G ru
%F CMFD_2011_42_a12
M. A. Komarov. Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/