Structure of the local controllability set for a family of $2$-systems on a plane near the zero indicatrix point
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work it is shown that if certain natural conditions of community of position hold, then critical points of the local controllability set for a $2$-parameter family of $2$-systems on a plane near the point with zero indicatrix of the velocity are well defined by first derivatives of fields of the family at the point. A method to construct this set near such a point is given.
@article{CMFD_2011_42_a12,
     author = {M. A. Komarov},
     title = {Structure of the local controllability set for a~family of $2$-systems on a~plane near the zero indicatrix point},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--151},
     year = {2011},
     volume = {42},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Structure of the local controllability set for a family of $2$-systems on a plane near the zero indicatrix point
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 134
EP  - 151
VL  - 42
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
LA  - ru
ID  - CMFD_2011_42_a12
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Structure of the local controllability set for a family of $2$-systems on a plane near the zero indicatrix point
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 134-151
%V 42
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/
%G ru
%F CMFD_2011_42_a12
M. A. Komarov. Structure of the local controllability set for a family of $2$-systems on a plane near the zero indicatrix point. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a12/

[1] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR

[2] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. Sb., 136(178):4 (1988), 478–499 | MR | Zbl

[3] Davydov A. A., Komarov M. A., “Bifurkatsii lokalnoi upravlyaemosti v semeistvakh bidinamicheskikh sistem na ploskosti”, Trudy MIAN, 261, 2008, 87–96 | MR

[4] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Trudy VlGU, 2007, no. 3, 66–75

[5] Komarov M. A., “Lokalnaya upravlyaemost v tipichnykh dvuparametricheskikh semeistvakh bidinamicheskikh sistem na ploskosti”, Uspekhi matem. nauk, 63:2 (2008), 173–174 | MR | Zbl

[6] Komarov M. A., Osobennosti lokalnoi upravlyaemosti semeistv polisistem na poverkhnostyakh, Diss. $\dots$ kand. fiz.-mat. nauk, Vladimir, 2009

[7] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl

[8] Petrov N. N., “Reshenie odnoi zadachi teorii upravlyaemosti”, Differents. uravneniya, 5:5 (1969), 962–963 | Zbl

[9] Bushaw D., “Dynamical polysystems and optimization”, Contributions to Differential Equations, 2 (1963), 351–365 | MR | Zbl

[10] Sussmann H. J., “A general theorem on local controllability”, SIAM J. Control Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl