The canonical theory of the impulse process optimality
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 118-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of the canonical theory of the Hamilton–Jacobi optimality for nonlinear dynamical systems with controls of the vector measure type and with trajectories of bounded variation. Infinitesimal conditions of the strong and weak monotonicity of continuous Lyapunov-type functions with respect to the impulsive dynamical system are formulated. Necessary and sufficient conditions of the global optimality for the problem of the optimal impulsive control with general end restrictions are represented. The conditions include the sets of weak and strong monotone Lyapunov-type functions and are based on the reduction of the original problem of the optimal impulsive control a finite-dimensional optimization problem on an estimated set of connectable points.
@article{CMFD_2011_42_a10,
     author = {V. A. Dykhta and O. N. Samsonyuk},
     title = {The canonical theory of the impulse process optimality},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {118--124},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - O. N. Samsonyuk
TI  - The canonical theory of the impulse process optimality
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 118
EP  - 124
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/
LA  - ru
ID  - CMFD_2011_42_a10
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A O. N. Samsonyuk
%T The canonical theory of the impulse process optimality
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 118-124
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/
%G ru
%F CMFD_2011_42_a10
V. A. Dykhta; O. N. Samsonyuk. The canonical theory of the impulse process optimality. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 118-124. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/

[1] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl

[2] Dykhta V. A., “Neravenstva Gamiltona–Yakobi v optimalnom upravlenii: gladkaya dvoistvennost i uluchshenie”, Vestnik Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 15:1 (2010), 405–426

[3] Dykhta V. A., “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Optimalnoe upravlenie i dinamicheskie sistemy, 110 (2006), 76–108

[4] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991 | MR

[5] Miller B. M., Rubinovich E. Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005

[6] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “A nondegenerate maximum principle for the impulse control problem with state constraints”, SIAM J. Control and Optim., 43 (2005), 1812–1843 | DOI | MR | Zbl

[7] Clarke F., Ledyaev Yu., Stern R., Wolenski P., Nonsmooth analysis and control theory, Springer-Verlag, N.Y., 1998 | MR

[8] Dykhta V. A., Samsonyuk O. N., “Some applications of Hamilton–Jacobi inequalities for classical and impulsive optimal control problems”, Eur. J. Control., 17:1 (2011), 55–69 | MR

[9] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Diff. and Integral Equat., 8 (1995), 269–288 | MR | Zbl

[10] Pereira F. L., Silva G. N., “Necessary conditions of optimality for vector-valued impulsive control problems”, Syst. and Control Lett., 40 (2000), 205–215 | DOI | MR | Zbl