Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a10, author = {V. A. Dykhta and O. N. Samsonyuk}, title = {The canonical theory of the impulse process optimality}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {118--124}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/} }
TY - JOUR AU - V. A. Dykhta AU - O. N. Samsonyuk TI - The canonical theory of the impulse process optimality JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 118 EP - 124 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/ LA - ru ID - CMFD_2011_42_a10 ER -
V. A. Dykhta; O. N. Samsonyuk. The canonical theory of the impulse process optimality. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 118-124. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a10/
[1] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl
[2] Dykhta V. A., “Neravenstva Gamiltona–Yakobi v optimalnom upravlenii: gladkaya dvoistvennost i uluchshenie”, Vestnik Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 15:1 (2010), 405–426
[3] Dykhta V. A., “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Optimalnoe upravlenie i dinamicheskie sistemy, 110 (2006), 76–108
[4] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991 | MR
[5] Miller B. M., Rubinovich E. Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005
[6] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “A nondegenerate maximum principle for the impulse control problem with state constraints”, SIAM J. Control and Optim., 43 (2005), 1812–1843 | DOI | MR | Zbl
[7] Clarke F., Ledyaev Yu., Stern R., Wolenski P., Nonsmooth analysis and control theory, Springer-Verlag, N.Y., 1998 | MR
[8] Dykhta V. A., Samsonyuk O. N., “Some applications of Hamilton–Jacobi inequalities for classical and impulsive optimal control problems”, Eur. J. Control., 17:1 (2011), 55–69 | MR
[9] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Diff. and Integral Equat., 8 (1995), 269–288 | MR | Zbl
[10] Pereira F. L., Silva G. N., “Necessary conditions of optimality for vector-valued impulsive control problems”, Syst. and Control Lett., 40 (2000), 205–215 | DOI | MR | Zbl