Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_41_a0, author = {D. P. Ilyutko and V. O. Manturov and I. M. Nikonov}, title = {Parity in knot theory and graph-links}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {3--163}, publisher = {mathdoc}, volume = {41}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_41_a0/} }
D. P. Ilyutko; V. O. Manturov; I. M. Nikonov. Parity in knot theory and graph-links. Contemporary Mathematics. Fundamental Directions, Topology, Tome 41 (2011), pp. 3-163. http://geodesic.mathdoc.fr/item/CMFD_2011_41_a0/
[1] Afanasev D. M., “Ob usilenii invariantov virtualnykh uzlov s pomoschyu chetnosti”, Mat. sb., 201:6 (2010), 3–18 | MR | Zbl
[2] Afanasev D. M., Manturov V. O., “O minimalnykh diagrammakh virtualnykh zatseplenii”, Dokl. RAN, 426:1 (2009), 7–10 | MR
[3] Vasilev V. A., “Invarianty i kogomologii pervogo poryadka dlya prostranstv vlozhenii samoperesekayuschikhsya krivykh v $\mathbb R^n$”, Izv. RAN. Ser. mat., 69:5 (2005), 3–52 | MR | Zbl
[4] Drobotukhina Yu. V., “Analog mnogochlena Dzhounsa dlya zatseplenii v $\mathbb RP^3$ i obobschenie teoremy Kaufmana–Murasugi”, Algebra i analiz, 2:3 (1990), 171–191 | MR | Zbl
[5] Duzhin S. V., Karev M. V., “Opredelenie orientatsii strunnykh zatseplenii pri pomoschi invariantov konechnogo tipa”, Funkts. analiz i ego prilozh., 41:3 (2007), 48–59 | MR | Zbl
[6] Gusarov M. N., “Novaya forma polinoma Dzhonsa–Konveya dlya orientirovannykh zatseplenii”, Geometriya i topologiya. 1, Zap. nauch. semin. LOMI, 193, 1991, 4–9 | MR | Zbl
[7] Zenkina M. V., Manturov V. O., “Invariant zatseplenii v utolschennom tore”, Zap. nauch. semin. POMI, 372, 2009, 5–18
[8] Ilyutko D. P., “Osnaschennye 4-grafy: eilerovy tsikly, gaussovy tsikly i povorachivayuschie obkhody”, Mat. sb., 202:9 (2011), 53–76
[9] Ilyutko D. P., Manturov V. O., “Graf-zatsepleniya”, Dokl. RAN, 428:5 (2009), 591–594 | MR
[10] Ilyutko D. P., Manturov V. O., “Kobordizmy svobodnykh uzlov”, Dokl. RAN, 429:4 (2009), 439–441 | MR
[11] Kaufman L. Kh., Manturov V. O., “Virtualnye uzly i zatsepleniya”, Tr. mat. in-ta RAN im. V. A. Steklova, 252, 2006, 114–133 | MR
[12] Manturov V. O., “Bifurkatsii, atomy i uzly”, Vestn. MGU. Ser. mat., 2000, no. 1, 3–8 | MR | Zbl
[13] Manturov V. O., “Atomy, vysotnye atomy, khordovye diagrammy i uzly. Perechislenie atomov maloi slozhnosti s ispolzovaniem yazyka Mathematica 3.0”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 203–212
[14] Manturov V. O., “Skobochnaya polugruppa uzlov”, Mat. zametki, 67:4 (2000), 549–562 | MR | Zbl
[15] Manturov V. O., Teoriya uzlov, RKhD, Moskva–Izhevsk, 2005, 512 pp.
[16] Manturov V. O., “Invariantnye polinomy virtualnykh zatseplenii”, Tr. Mosk. mat. o-va, 65, 2004, 175–200 | MR
[17] Manturov V. O., “O raspoznavanii virtualnykh kos”, Geometriya i topologiya. 8, Zap. nauch. semin. POMI, 299, 2003, 267–286 | MR | Zbl
[18] Manturov V. O., “Invarianty virtualnykh zatseplenii”, Dokl. RAN, 384:1 (2002), 11–13 | MR | Zbl
[19] Manturov V. O., “Atomy i minimalnye diagrammy virtualnykh zatseplenii”, Dokl. RAN, 391:2 (2003), 166–168 | MR | Zbl
[20] Manturov V. O., “Polinom Khovanova dlya virtualnykh uzlov”, Dokl. RAN, 398:1 (2004), 15–18 | MR
[21] Manturov V. O., “Krivye na poverkhnostyakh, virtualnye uzly i polinom Dzhonsa–Kaufmana”, Dokl. RAN, 390:2 (2003), 155–157 | MR | Zbl
[22] Manturov V. O., “Invarianty konechnogo poryadka virtualnykh zatseplenii i polinom Dzhonsa–Kaufmana”, Dokl. RAN, 395:1 (2004), 18–21 | MR | Zbl
[23] Manturov V. O., “O dlinnykh virtualnykh uzlakh”, Dokl. RAN, 401:5 (2005), 595–598 | MR
[24] Manturov V. O., “Invariantnyi polinom dvukh peremennykh dlya virtualnykh zatseplenii”, Usp. mat. nauk, 57:5(347) (2002), 141–142 | MR | Zbl
[25] Manturov V. O., “Kompleks Khovanova dlya virtualnykh uzlov”, Fundam. prikl. mat., 11:4 (2005), 127–152 | MR | Zbl
[26] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv RAN. Ser. mat., 69:5 (2005), 169–178 | MR | Zbl
[27] Manturov V. O., “Kombinatornye voprosy teorii virtualnykh uzlov”, Matematicheskie voprosy kibernetiki, 12, 2003, 147–178
[28] Manturov V. O., “Kompleks Khovanova i minimalnye diagrammy uzlov”, Dokl. RAN, 406:3 (2006), 308–311 | MR | Zbl
[29] Manturov V. O., “Gomologii Khovanova virtualnykh uzlov s proizvolnymi koeffitsientami”, Izv. RAN. Ser. mat., 71:5 (2007), 111–148 | MR | Zbl
[30] Manturov V. O., “Vlozheniya chetyrekhvalentnykh osnaschennykh grafov v dvumernye poverkhnosti”, Dokl. RAN, 424:3 (2009), 308–310 | MR
[31] Manturov V. O., “Dopolnitelnye graduirovki v gomologiyakh Khovanova”, Dokl. RAN, 420:2 (2008), 168–171 | MR | Zbl
[32] Manturov V. O., “Chetnost i kobordizmy svobodnykh uzlov”, Mat. sb., 203:2 (2012), 45–76
[33] Manturov V. O., “Chetnost v teorii uzlov”, Mat. sb., 201:5 (2010), 65–110 | MR | Zbl
[34] Manturov V. O., Svobodnye uzly, gruppy i invarianty konechnogo poryadka, Statu Nascendi
[35] Turaev V. G., Vvedenie v kombinatornye krucheniya, MTsNMO, M., 2004, 136 pp.
[36] Shubert Kh., “Algoritm dlya razlozheniya zatseplenii na prostye slagaemye”, Matematika, 10:4 (1966), 57–104
[37] Afanasiev D., “On a generalization of the Alexander polynomial for long virtual knots”, J. Knot Theory Ramifications, 18:10 (2009), 1329–1333 | DOI | MR | Zbl
[38] Afanasiev D. M., Manturov V. O., “On virtual crossing number estimates for virtual links”, J. Knot Theory Ramifications, 18:6 (2009), 757–772 | DOI | MR | Zbl
[39] Alexander J. W., “Topological invariants of knots and links”, Trans. Am. Math. Soc., 20 (1923), 257–306
[40] Alexander J. W., “A matrix knot invariant”, Proc. Natl. Acad. Sci. USA, 19 (1933), 222–275 | DOI
[41] Arnold V. I., Topological invariants of plane curves and caustics, Univ. Lect. Ser., 5, AMS, Providence, 1994 | MR | Zbl
[42] Arnold V. I., “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. Soviet Math., 21, AMS, Providence, 1994, 33–91 | MR
[43] Artin E., “Theorie der Zöpfe”, Abh. Math. Sem. Univ. Hamburg., 4 (1925), 27–72
[44] Asaeda M., Przytycki J., Sikora A., “Categorification of the Kauffman bracket skein module of I-bundles over surfaces”, Algebraic and Geometric Topology, 4:52 (2004), 1177–1210 | DOI | MR | Zbl
[45] Bardakov V. G., “The virutal and universal bradis”, Fundam. Math., 184 (2004), 1–18 | DOI | MR | Zbl
[46] Bar-Natan D., “On the Vassiliev Knot Invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[47] Bar-Natan D., “On Khovanov's categorification of the Jones polynomial”, Algebraic and Geometric Topology, 2:16 (2002), 337–370 | DOI | MR | Zbl
[48] Bar-Natan D., Garoufalidis S., “On the Melvin–Morton–Rozansky conjecture”, Inv. Math., 125 (1996), 103–133 | DOI | MR | Zbl
[49] Bigelow S., “Braid groups are linear”, J. Amer. Math. Soc., 14 (2001), 471–486 | DOI | MR | Zbl
[50] Bigelow S., “Does the Jones polynomial detect the unknot”, J. Knot Theory Ramifications, 11 (2002), 493–505 | DOI | MR | Zbl
[51] Birman J. S., Braids, links and mapping class groups, Ann. Math. Stud., 1982, Princeton Univ. Press, Princeton, NJ, 1975, 228 pp. | MR
[52] Birman J. S., “New points of view in knot theory”, Bull. AMS, 28 (1993), 283–287 | DOI | MR
[53] Blanchet C., “An oriented model for Khovanov homology”, J. Knot Theory Ramifications, 19:2 (2010), 291–312 | DOI | MR | Zbl
[54] Bloom J., “Odd Khovanov homology is mutation invariant”, Math. Res. Lett., 17:1 (2010), 1–10 | MR | Zbl
[55] Bouchet A., “Circle graph obstructions”, J. Combin. Theory Ser. B, 60 (1994), 107–144 | DOI | MR | Zbl
[56] Bouchet A., “Multimatroids. I. Coverings by independent sets”, SIAM J. Discr. Math., 10:4 (1997), 626–646 | DOI | MR | Zbl
[57] Bouchet A., “Unimodularity and circle graphs”, Discr. Math., 66 (1987), 203–208 | DOI | MR | Zbl
[58] Bouchet A., Cunningham W. H., Geelen J. F., “Principally unimodular skew-symmetric matrices”, Combinatorica, 18:4 (1998), 461–486 | DOI | MR | Zbl
[59] Bourgoin M. O., “Twisted Link Theory”, Algebraic and Geometric Topology, 8:3 (2008), 1249–1279 | DOI | MR | Zbl
[60] Burau W., “Über Zopfgruppen und gleichzeitig verdrillte Verkettungen”, Abh. Math. Sem. Univ. Hamburg., 11 (1936), 179–186 | DOI
[61] Cairns G., Elton D., “The planarity problem for signed Gauss words”, J. Knot Theory Ramifications, 2 (1993), 359–367 | DOI | MR | Zbl
[62] Cairns G., Elton D., “The planarity problem, II”, J. Knot Theory Ramifications, 5 (1996), 137–144 | DOI | MR | Zbl
[63] Carter J. S., “Closed curves that never extend to proper maps of disks”, Proc. AMS, 113:3 (1991), 879–888 | DOI | MR | Zbl
[64] Carter J. S., Saito M., Diagrammatic invariants of knotted curves and surfaces, Unpublished manuscript, 1992
[65] Carter J. S., Kamada S., Saito M., “Stable equivalence of knots on surfaces”, J. Knot Theory Ramifications, 11 (2002), 311–322 | DOI | MR | Zbl
[66] Carter J. S., Kamada S., Saito M., Surfaces in 4-space, Springer-Verlag, N.Y., 2004 | MR
[67] Cerf J., Sur les difféomorphismes de la sphère de dimension trois ($\Gamma_4=0$), Lect. Notes Math., 53, Springer-Verlag, Berlin–New York, 1968 | MR | Zbl
[68] Champanerkar A., Kofman I., Spanning trees and Khovanov homology, arXiv: math.GT/0607510 | MR
[69] Chmutov S., Duzhin S., CDBook, Book about chord diagrams. Introduction to Vassiliev Knot Invariants http://www.pdmi.ras.ru/~duzhin/papers/
[70] Chmutov S. V., Duzhin S. V., Lando S. K., “Vassiliev Knot Invariants, I, II, III”, Adv. Sov. Math., 21, 1994, 117–147 | MR
[71] Chmutov S. V., Lando. S. K., “Mutant knots and intersection graphs”, Algebraic and Geometric Topology, 7 (2007), 1579–1598 | DOI | MR | Zbl
[72] Chrisman M., Manturov V. O., Combinatorial formulae for finite-type invariants via parities, arXiv: 1002.0539[math.GT]
[73] Clark D., Morrison S., Walker K., “Fixing the functoriality of Khovanov homology”, Geometry and Topology, 13:3 (2009), 1499–1582 | DOI | MR | Zbl
[74] Cohn M., Lempel A., “Cycle decomposition by disjoint transpositions”, J. Combin. Theory Ser. A, 13 (1972), 83–89 | DOI | MR | Zbl
[75] Conway J. H., “An enumeration of knots and links and some of their algebraic properties”, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, 329–358 | MR
[76] Crapo H., Rosenstiehl. P., “On lacets and their manifolds”, Discr. Math., 233:1–3 (2001), 299–320 | DOI | MR | Zbl
[77] Dehn M., “Die beiden Kleeblattschlingen”, Math. Ann., 102 (1914), 402–413 | DOI | MR
[78] Dehn M., “Über die Topologie des dreidimensionalen Raumes”, Math. Ann., 69 (1910), 137–168 | DOI | MR | Zbl
[79] Dye H. A., Detection and Characterization of Virtual Knot Diagrams, Ph. D. Thesis, University of Illinois at Chicago, 2003 | MR
[80] Dye H. A., Kauffman L. H., “Virtual knot diagrams and the Witten–Reshetikhin–Turaev Invariants”, J. Knot Theory Ramifications, 14:8 (2005), 1045–1075 | DOI | MR | Zbl
[81] Dye H. A., Kauffman L. H., Minimal surface representation of virtual knots and links, arXiv: math.GT/0401035v1 | MR
[82] Dye H. A., Kauffman L. H., “Virtual Crossing Number and the Arrow Polynomial”, J. Knot Theory Ramifications, 18:10 (2009), 1335–1357 | DOI | MR | Zbl
[83] Dye H. A., Kauffman L. H., Manturov V. O., “On two categorifications of the arrow polynomial for virtual knots”, Contributions in the Mathematical and Computational Sciences, 1 (2010), 95–127 | MR
[84] Eliahou Sh., Kauffman L. H., Thistletwaite M., “Infinite families of links with trivial Jones polynomial”, Topology, 42 (2003), 155–169 | DOI | MR | Zbl
[85] Fenn R. A., Kauffman L. H., Manturov V. O., “Virtual Knots: Unsolved Problems”, Proceedings of the Conference “Knots in Poland–2003”, Fundam. Math., 188, 2005, 293–323 | DOI | MR | Zbl
[86] Filotti I. S., Miller G. L., Reif J., “On determining the genus of a graph in $O(v^{O(g)})$ steps”, Proc. XI Annual Symp. on Theory of Computing, ACM Press, New York, 1979, 27–37
[87] Flemming Th., Mellor B., “Virtual Spatial Graphs”, Kobe J. Math., 24 (2007), 57–85 | MR
[88] Fomenko A. T., “The theory of multidimensional integrable hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Adv. Sov. Math., 6, 1991, 1–35 | MR | Zbl
[89] Freyd P., Yetter D., Hoste J., Lickorish W. B. R., Millett K. C., Ocneanu A., “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc., 12 (1985), 239–246 | DOI | MR | Zbl
[90] Garoufalidis S., “A conjecture on Khovanov's invariants”, Fundam. Math., 184 (2004), 99–101 | DOI | MR | Zbl
[91] Gauss C. F., “Zur Mathematischen Theorie der electrodynamischen Wirkungen”, Werke Köningl. Gesell. Wiss. Göttingen, 5 (1877), 605
[92] Mo-Lin Ge, Kauffman L. H., Yong Zhang, Virtual extension of Temperley–Lieb algebra, arXiv: math-ph/0610052
[93] Ghier L., “Double occurence words with the same alternance graph”, Ars Combin., 36 (1993), 57–64 | MR | Zbl
[94] Gibson A., Homotopy invariants of Gauss words, arXiv: 0902.0062[math.GT] | MR
[95] Gibson A., Ph. D. thesis
[96] Goldman W., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl
[97] Gordon C. McA., Luecke J., “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415 | DOI | MR | Zbl
[98] Goussarov M., Polyak M., Viro O., “Finite type invariants of classical and virtual knots”, Topology, 39 (2000), 1045–1068 | DOI | MR | Zbl
[99] Haken W., “Theorie der Normalflächen”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl
[100] Hass J., Scott P., “Shortening curves on surfaces”, Topology, 33:1 (1994), 25–43 | DOI | MR | Zbl
[101] Hemion G., The classification of knots and 3-dimensional spaces, Oxford Univ. Press, Oxford, 1992 | MR | Zbl
[102] Hrencecin D., On filamentations and virtual knot invariant, Thesis http://www.math.uic.edu/
[103] Hrencecin D., Kauffman L. H., “On filamentations and virtual knots”, Topology Appl., 134 (2003), 23–52 | DOI | MR | Zbl
[104] Hurwitz A., “Über Riemannsche Fläche mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1981), 1–61 | DOI | MR
[105] Ilyutko D. P., Framed 4-valent graphs: Euler tours, Gauss circuits and rotating circuits, arXiv: 0911.5504[math.CO]
[106] Ilyutko D. P., An equivalence between the set of graph-knots and the set of homotopy classes of looped graphs, arXiv: 1001.0360[math.GT]
[107] Ilyutko D. P., Manturov V. O., “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl
[108] Ilyutko D. P., Manturov V. O., Graph-links, arXiv: 1001.0384[math.GT] | MR
[109] Ishii A., Kamada N., Kamada S., “The virtual magnetic Kauffman bracket skein module and skein relations for the $f$-polynomial”, J. Knot Theory Ramifications, 17:6 (2008), 675–688 | DOI | MR | Zbl
[110] Jablan S., Sazdanovic R., LINKNOT, Knot Theory by Computer, Ser. on Knots and Everything, 21, World Scientific, 2007 | DOI | MR | Zbl
[111] Jacobsson M., “An invariant of link cobordisms from Khovanov's homology theory”, Algebraic and Geometric Topology, 4 (2004), 1211–1251 | DOI | MR | Zbl
[112] Jaeger F., Kauffman L. H., Saleur H., “The Conway polynomial in $S^3$ and thickened surfaces: A new determinant formulation”, J. Combin. Theory. Ser. B, 61 (1994), 237–259 | DOI | MR | Zbl
[113] Jones V. F. R., “A polynomial invariant for links via Neumann algebras”, Bull. Amer. Math. Soc., 129 (1985), 103–112 | DOI | MR
[114] Jones V. F. R., “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126 (1987), 335–388 | DOI | MR | Zbl
[115] Jonsson J., “On the number of Euler trails in directed graphs”, Math. Scand., 90 (2002), 191–214 | MR | Zbl
[116] Kadokami S., “Detecting non-triviality of virtual links”, J. Knot Theory Ramifications, 6 (2003), 781–819 | DOI | MR
[117] Kamada N., “On the Jones polynomial of checkerboard colorable virtual knots”, Osaka J. Math., 39:2 (2002), 325–333 | MR | Zbl
[118] Kamada N., “A relation of Kauffman's $f$-polynomials of virtual links”, Topology Appl., 146–147 (2005), 123–132 | DOI | MR | Zbl
[119] Kamada N., Kamada S., “Abstract link diagrams and virtual knots”, J. Knot Theory Ramifications, 9:1 (2000), 93–109 | DOI | MR
[120] Kamada N., Nakabo S., Satoh S., “A virtualized skein relation for Jones polynomial”, Illinois J. Math., 46:2 (2002), 467–475 | MR | Zbl
[121] Kamada S., “Braid presentation of virtual knots and welded knots”, Osaka J. Math., 44:2 (2007), 441–458 | MR | Zbl
[122] Kauffman L. H., On Knots, Ann. Math. Stud., Princeton University Press, 1987 | Zbl
[123] Kauffman L. H., Knots and Physics, World Scientific, Singapore, 1991 | MR | Zbl
[124] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26 (1987), 395–407 | DOI | MR | Zbl
[125] Kauffman L. H., “Combinatorics and knot theory”, Contemp. Math., 20 (1983), 181–200 | DOI | MR | Zbl
[126] Kauffman L. H., “Link manifolds and periodicity”, Bull. Amer. Math. Soc., 79 (1973), 570–573 | DOI | MR | Zbl
[127] Kauffman L. H., “Virtual knot theory”, Eur. J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl
[128] Kauffman L. H., “Detecting virtual knots”, Atti. Sem. Math. Fis., Supplemento al vol. IL, Univ. Modena, 2001, 241–282 | MR | Zbl
[129] Kauffman L. H., Diagrammatic Knot Theory, in preparation
[130] Kauffman L. H., “A self-linking invariant of virtual knots”, Fundam. Math., 184 (2004), 135–158 | DOI | MR | Zbl
[131] Kauffman L. H., Virtual knots, Talks at MSRI Meeting, January 1997 and AMS meeting at University of Maryland, College Park, March 1997
[132] Kauffman L. H., Lambropoulou S., “Virtual braids”, Fundam. Math., 184 (2004), 159–186 | DOI | MR | Zbl
[133] Kauffman L. H., Lambropoulou S., “Virtual braids and the $L$-Move”, J. Knot Theory Ramifications, 15:6 (2006), 773–811 | DOI | MR | Zbl
[134] Kauffman L. H., Manturov V. O., “Virtual biquandles”, Fundam. Math., 188 (2005), 103–146 | DOI | MR | Zbl
[135] Kauffman L. H., Radford D., “Bi-oriented quantum algebras and a generalized Alexander polynomial for virtual links”, Contemp. Math., 318 (2002), 113–140 | DOI | MR
[136] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (1997), 359–426 | DOI | MR
[137] Khovanov M., “A functor-valued invariant of tangles”, Algebraic and Geometric Topology, 2 (2002), 665–741 | DOI | MR | Zbl
[138] Khovanov M., Link homology and Frobenius extensions, arXiv: math/0411447[math.QA] | MR
[139] Khovanov M., “Categorifications of the colored Jones polynomial”, J. Knot Theory Ramifications, 14:1 (2005), 111–130 | DOI | MR | Zbl
[140] Khovanov M., Rozansky L., Matrix factorizations and link homology, arXiv: math/0401268[math.QA] | MR
[141] Khovanov M., Rozansky L., Matrix factorizations and link homology II, arXiv: math/0505056[math.QA] | MR
[142] Khovanov M., Rozansky L., Virtual crossings, convolutions and a categorification of the $SO(2N)$ Kauffman polynomial, arXiv: math/0701333[math.QA] | MR
[143] Kotzig A., “Eulerian lines in finite 4-valent graphs and their transformations”, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, 219–230 | MR
[144] Krammer D., “Braid groups are linear”, Ann. Math., 2:155 (2002), 131–156 | DOI | MR | Zbl
[145] Kronheimer P. B., Mrowka T. S., Khovanov homology is an unknot-detector, arXiv: 1005.4346[math.GT] | MR
[146] Krylov D. Yu., Manturov V. O., Parity and relative parity in knot theory, arXiv: 1101.0128[math.GT]
[147] Kuperberg G., “What is a virtual link?”, Algebraic and Geometric Topology, 3 (2003), 587–591 | DOI | MR | Zbl
[148] Las Vergnas M., “Eulerian circuits of 4-valent graphs imbedded in surfaces”, Algebraic methods in graph theory (Szeged, 1978), Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam–New York, 1981, 451–477 | MR
[149] Lee E. S., The support of the Khovanov's invariants for alternating knots, arXiv: math/0201105[math.GT]
[150] Lee E. S., On Khovanov invariant for alternating links, arXiv: math/0210213[math.GT]
[151] Lins S., Richter B., Shank H., “The Gauss code problem off the plane”, Aequat. Math., 33:1 (1987), 81–95 | DOI | MR | Zbl
[152] Lovász L., Marx M., “A forbidden substructure characterization of Gauss codes”, Acta Sci. Math. (Szeged), 38:1–2 (1976), 115–119 | MR | Zbl
[153] Lowrance A., Heegaard–Floer homology and Turaev genus, arXiv: 0709.0720[math.GT]
[154] Manturov O. V., Manturov V. O., “Free knots and groups”, J. Knot Theory Ramifications, 18:2 (2009), 181–186 | MR
[155] Manturov V. O., Knot theory, CRC-Press, Boca Raton, 2004 | MR | Zbl
[156] Manturov V. O., “Multivariable polynomial invariants for virtual knots and links”, J. Knot Theory Ramifications, 12:8 (2003), 1131–1144 | DOI | MR | Zbl
[157] Manturov V. O., “Kauffman-like polynomial and curves in 2-surfaces”, J. Knot Theory Ramifications, 12:8 (2003), 1145–1153 | DOI | MR | Zbl
[158] Manturov V. O., “Vassiliev invariants for virtual links, curves on surfaces and the Jones–Kauffman polynomial”, J. Knot Theory Ramifications, 14:2 (2005), 231–242 | DOI | MR | Zbl
[159] Manturov V. O., “Long virtual knots and their invariants”, J. Knot Theory Ramifications, 13:8 (2004), 1029–1039 | DOI | MR | Zbl
[160] Manturov V. O., “On invariants of virtual links”, Acta Appl. Math., 72:3 (2002), 295–309 | DOI | MR | Zbl
[161] Manturov V. O., “Virtual knots and infinite-dimensional Lie algebras”, Acta Appl. Math., 83 (2004), 221–233 | DOI | MR | Zbl
[162] Manturov V. O., “Flat hierarchy”, Fundam. Math., 188 (2005), 147–154 | DOI | MR | Zbl
[163] Manturov V. O., “Khovanov homology for virtual links with arbitrary coefficients”, J. Knot Theory Ramifications, 16:3 (2007), 345–377 | DOI | MR | Zbl
[164] Manturov V. O., On free knots, arXiv: 0901.2214[math.GT]
[165] Manturov V. O., On free knots and links, arXiv: 0902.0127[math.GT]
[166] Manturov V. O., Free knots are not invertible, arXiv: 0909.2230v2[math.GT]
[167] Manturov V. O., Parity and cobordisms of free knots, arXiv: 1001.2827[math.GT]
[168] Manturov V. O., Free knots and parity, arXiv: 0912.5348[math.GT]
[169] Manturov V. O., “Additional gradings in Khovanov homology”, Topology and Physics, Dedicated to the Memory of X.-S. Lin, Nankai Tracts in Mathematics, World Scientific, Singapore, 2008, 266–300 | MR
[170] Manturov V. O., “Embeddings of four-valent framed graphs into 2-surfaces”, The mathematics of knots, Contributions in the Mathematical and Computational Sciences, 1, 2010, 209–238 | MR
[171] Manturov V. O., A functorial map from virtual knots to classical knots and generalisations of parity, arXiv: 1011.4640[math.GT]
[172] Markoff A. A., “Über die freie Äquivalenz der geschlossenen Zöpfe”, Mat. Sb., 1(43):1 (1936), 73–78 | Zbl
[173] Matveev S. V., Algorithmic topology and classification of 3-manifolds, Springer-Verlag, New York, 2003 | MR
[174] McDougall A., A diagramless link homology, arXiv: 0911.2518[math.GT]
[175] Mellor B., “A few weight systems arising from intersection graphs”, Michigan Math. J., 51 (2003), 509–536 | DOI | MR | Zbl
[176] Menasco W., Thistlethwaite M., “A classification of alternating links”, Ann. Math., 138 (1993), 113–171 | DOI | MR | Zbl
[177] Miyazawa Y., “Magnetic graphs and an invariant for virtual links”, J. Knot Theory Ramifications, 15:10 (2006), 1319–1334 | DOI | MR | Zbl
[178] Miyazawa Y., “A multi-variable polynomial invariant for virtual knots and links”, J. Knot Theory Ramifications, 17:11 (2008), 1311–1326 | DOI | MR | Zbl
[179] Moran G., “Chords in a circle and linear algebra over $GF(2)$”, J. Combin. Theory Ser. A, 37 (1984), 239–247 | DOI | MR | Zbl
[180] Murasugi K., “The Jones polynomial and classical conjectures in knot theory”, Topology, 26 (1987), 187–194 | DOI | MR | Zbl
[181] Nash-Williams C. St. J. A., “Connected detachments of graphs and generalized Euler trails”, J. London Math. Soc. (2), 31:1 (1985), 17–29 | DOI | MR | Zbl
[182] Nelson S., “Unknotting virtual knots with Gauss diagram forbidden moves”, J. Knot Theory Ramifications, 10:6 (2001), 931–935 | DOI | MR | Zbl
[183] Nikonov I., Khovanov homology of graph-links, arXiv: 1005.2812[math.GT]
[184] Nikonov I., Odd Khovanov homology of principally unimodular bipartite graph-links, arXiv: 1006.0161[math.GT]
[185] Ohtsuki T., Quantum Invariants. A Study of Knots, 3-Manifolds, and Their Sets, World Scientific, Singapore, 2001 | MR
[186] Östlund Olof-Petter, Invariants of knot diagrams and relations among Reidemeister moves, arXiv: math/0005108[math.GT] | MR
[187] Ozsváth P., Rasmussen J., Szabó Z., Odd Khovanov homology, arXiv: 0710.4300[math.QA]
[188] Ozsváth P., Szabó Z., “Holomorphic disks and knot invariants”, Adv. Math., 186:1 (2004), 58–116 | DOI | MR | Zbl
[189] Polyak M., Viro O., “Gauss diagram formulae for Vassiliev invariants”, Int. Math. Research Notices, 11 (1994), 445–453 | DOI | MR | Zbl
[190] Rasmussen J. A., Khovanov homology and the slice genus, arXiv: math/0402131[math.GT] | MR
[191] Rasmussen J. A., Floer homology and knot complements, Ph. D. thesis, Harvard University, 2003, arXiv: math/0306378[math.GT] | MR
[192] Rasmussen J. A., Some differentials on Khovanov–Rozansky homology, arXiv: math/0607544[math.GT]
[193] Read R. C., Rosenstiehl P., “On the Gauss crossing problem”, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam–New York, 1976, 843–876 | MR
[194] Reidemeister K., Knotentheorie, Springer, Berlin, 1932 | MR | Zbl
[195] Satoh S., “Virtual knot presentation of ribbon torus-knots”, J. Knot Theory Ramifications, 9:4 (2000), 531–542 | DOI | MR | Zbl
[196] Sawollek J., “On Alexander–Conway polynomials for virtual knots and links”, J. Knot Theory Ramifications, 12:6 (2003), 767–779 | DOI | MR | Zbl
[197] Sawollek J., An orinetation-sensitive Vassiliev invarinats for virtual knots, arXiv: math/0203123[math.GT]
[198] Shumakovitch A., Torsion of the Khovanov homology, arXiv: math/0405474[math.GT]
[199] Silver D. S., Williams S. G., “Alexander groups and virtual links”, J. Knot Theory Ramifications, 10:1 (2001), 151–160 | DOI | MR | Zbl
[200] Silver D. S., Williams S. G., Alexander groups of long virtual knots, Preprint, 2004
[201] Soboleva E., “Vassiliev knot invariants coming from Lie algebras and 4-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169 | DOI | MR | Zbl
[202] Stoimenov A., Tchernov V., Vdovina A., “The canonical genus of a classical and virtual knot”, Proc. Conf. on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), Geom. Dedicata, 95, 2002, 215–225 | DOI | MR
[203] Thistlethwaite M., “A spanning tree expansion for the Jones polynonial”, Topology, 26 (1987), 297–309 | DOI | MR | Zbl
[204] Thistlethwaite M., “On the Kauffman polynomial of an adequate link”, Invent. Math., 93:2 (1988), 285–296 | DOI | MR | Zbl
[205] Traldi L., Binary nullity, Euler circuits and interlace polynomials, arXiv: 0903.4405[math.CO] | MR
[206] Traldi L., “A bracket polynomial for graphs. II. Links, Euler circuits and marked graphs”, J. Knot Theory Ramifications, 19 (2010), 547–586 | DOI | MR | Zbl
[207] Traldi L., A bracket polynomial for graphs. III. Vertex weights, arXiv: 0905.4879[math.GT] | MR
[208] Traldi L., A bracket polynomial for graphs, IV. Undirected Euler circuits, graph-links and multiply marked graphs, arXiv: 1003.1560[math.GT] | MR
[209] Traldi L., Zulli L., “A bracket polynomial for graphs”, J. Knot Theory Ramifications, 18 (2009), 1681–1709 | DOI | MR | Zbl
[210] Turaev V. G., “A simple proof of the Murasugi and Kauffman theorems on alternating links”, Enseignement Math. (2), 33:3–4 (1987), 203–225 | MR | Zbl
[211] Turaev V. G., Virtual strings and their cobordisms, arXiv: math/0311185[math.GT]
[212] Turaev V. G., “Algebras of loops on surfaces, algebras of knots, and quantization”, Braid Group, Knot Theory and Statistical Mechanis, Math. Phys., 9, eds. C. N. Yang, M. L. Ge, World Sci. Publ., Signapore, 1989, 59–95 | MR
[213] Turaev V. G., Cobordisms of words, arXiv: math/0511513v2[math.CO] | MR
[214] Turaev V. G., “Topology of words”, Proc. Lond. Math. Soc., 95:3 (2007), 360–412 | DOI | MR | Zbl
[215] Turaev V. G., Virtual open strings and their cobordisms, arXiv: math/0311185v5[math.GT]
[216] Turaev V. G., Knots and words, arXiv: math/0506390v1[math.GT] | MR
[217] Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Super., 4:24 (1991), 635–704 | MR | Zbl
[218] Turaev V. G., Turner P., “Unoriented topological quantum field theory and link homology”, Algebraic and Geometric Topology, 6 (2006), 1069–1093 | DOI | MR | Zbl
[219] Tutte W. T., “A homotopy theorem for matroids I, II”, Trans. Amer. Math. Soc., 88 (1958), 144–174 | MR | Zbl
[220] Vassiliev V. A., “Cohomology of knot spaces in theory of singularities and its applications”, Adv. Sov. Math., 1, 1990, 23–70 | MR
[221] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Trans. Math. Monogr., 98, Amer. Math. Soc., Providence, RI, 1994 | MR
[222] Vershinin V., “On homology of virtual braids and Burau representation”, J. Knot Theory Ramifications, 18:5 (2001), 795–812 | DOI | MR
[223] Viro O., Remarks on definition of Khovanov homology, arXiv: math/0202199[math.GT]
[224] Viro O., “Virtual links and orientations of chord diagrams”, Proc. Gökova Conference-2005, Int. Press, 187–212 | MR | Zbl
[225] Vogel P., Algebraic structures on modules of diagrams, Prépublication 32, revised in 1997, Institut de Mathématiques de Jussieu http://www.math.jussieu.fr/~vogel
[226] Wehrli S., Khovanov homology and Conway mutations, arXiv: math/0301312[math.GT]
[227] Wehrli S., “A spanning tree model for the Khovanov homology”, J. Knot Theory Ramifications, 17:12 (2008), 1561–1574 | DOI | MR | Zbl