On differential equations with nonlocal switch functionals
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 163-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of ordinary differential equations along with nonlocal functionals are considered. These functionals allow us to watch qualitative characteristics of solutions. It is proved that if assumptions are natural, then the switch moment can be found by means of finite difference approximations of differential equations. The results obtained are used to modify the system of equations describing surface waves of an ideal liquid in conformal variables.
@article{CMFD_2011_39_a9,
     author = {R. V. Shamin},
     title = {On differential equations with nonlocal switch functionals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a9/}
}
TY  - JOUR
AU  - R. V. Shamin
TI  - On differential equations with nonlocal switch functionals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 163
EP  - 172
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a9/
LA  - ru
ID  - CMFD_2011_39_a9
ER  - 
%0 Journal Article
%A R. V. Shamin
%T On differential equations with nonlocal switch functionals
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 163-172
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a9/
%G ru
%F CMFD_2011_39_a9
R. V. Shamin. On differential equations with nonlocal switch functionals. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 163-172. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a9/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatlit, M., 1959

[2] Gurevich P. L., Eger V., Skubachevskii A. L., “O suschestvovanii periodicheskikh reshenii nekotorykh nelineinykh zadach termokontrolya”, Dokl. RAN, 418:2 (2008), 151–154 | MR | Zbl

[3] Dyachenko A. I., Zakharov V. E., Kuznetsov E. A., “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 22:10 (1999), 916–928

[4] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, LKI, M., 2007

[5] Nalimov V. I., Pukhnachev V. V., Neustanovivshiesya dvizheniya idealnoi zhidkosti so svobodnoi granitsei, NGU, Novosibirsk, 1975

[6] Ovsyannikov L. V., “K obosnovaniyu teorii melkoi vody”, Din. spl. sredy, 15, 1973, 104–125

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[8] Shamin R. V., Vychislitelnye eksperimenty v modelirovanii poverkhnostnykh voln v okeane, Nauka, M., 2008

[9] Shamin R. V., “Dinamika idealnoi zhidkosti so svobodnoi poverkhnostyu v konformnykh peremennykh”, Sovrem. mat. Fundam. napravl., 28, 2008, 3–144 | MR | Zbl

[10] Shamin R. V., “Poverkhnostnye volny minimalnoi gladkosti”, Sovrem. mat. Fundam. napravl., 35, 2010, 126–140

[11] Gurevich P. L., Jaeger W., Skubachevskii A. L., “On periodicity of solutions for thermocontrol problems with hysteresis-type switches”, SIAM J. Math. Anal., 41:2 (2009), 733–752 | DOI | MR | Zbl

[12] Zakharov V. E., Dyachenko A. I., Vasilyev O. A., “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, Eur. J. Mech. B Fluids, 21 (2002), 283–291 | DOI | MR | Zbl