The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 55-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a new limiting form of the Radon–Nikodym property for the Bochner integral. We prove that the limiting form holds for an arbitrary Fréchet space as opposed to an ordinary Radon–Nikodym property. We consider some applications in linear and nonlinear analysis.
@article{CMFD_2010_37_a4,
     author = {I. V. Orlov and F. S. Stonyakin},
     title = {The limiting form of the {Radon--Nikodym} property is true for all {Fr\'echet} spaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - F. S. Stonyakin
TI  - The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 55
EP  - 69
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/
LA  - ru
ID  - CMFD_2010_37_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A F. S. Stonyakin
%T The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 55-69
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/
%G ru
%F CMFD_2010_37_a4
I. V. Orlov; F. S. Stonyakin. The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 55-69. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/

[1] Danford N., Shvarts Dzh. T, Lineinye operatory. Obschaya teoriya, IL, M., 1962

[2] Orlov I. V., “Skhodimost pochti vsyudu kak skhodimost v nelineinoi induktivnoi shkale lokalno vypuklykh prostranstv”, Uchenye zapiski Tavricheskogo nats. universiteta. Matematika, 14:53 (2001), 75–80

[3] Orlov I. V., “Formula konechnykh priraschenii dlya otobrazhenii v induktivnye shkaly prostranstv”, Matematicheskaya fizika, analiz, geometriya (MAG), 8:4 (2001), 419–439 | MR | Zbl

[4] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy: formula konechnykh priraschenii i smezhnye rezultaty”, Sovremennaya matematika. Fundamentalnye napravleniya, 34, 2009, 121–138 | MR

[5] Trenogin V. A., Pisarevskii B. M., Soboleva T. S., Zadachi i uprazhneniya po funktsionalnomu analizu, Nauka, M., 1984 | MR | Zbl

[6] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[7] Arvanitakis A. D., Avilés A., Some examples of continuous images of Radon–Nikodym compact spaces, 3 Mar 2009, 11 pp., arXiv: 0903.0653v1[math.GN] | MR

[8] Berezansky Yu. M., Sheftel Z. Gr., Us G. F., Functional Analysis, v. 1, Birkhäuser Verlag, Basel–Boston–Berlin, 1995

[9] Bu Q., Buskes G., Wei-Kai L., “The Radon–Nikodym property for tensor products of banach lattices, II”, Positivity, 12 (2008), 45–54 | DOI | MR | Zbl

[10] Chakraborty N. D., Jaker Ali Sk., “Type II-$\Lambda$-weak Radon–Nikodym property in a Banach space associated with a compact metrizable abelian group”, Extracta Math., 23:3 (2008), 201–216 | MR | Zbl

[11] Cheeger J., Kleiner B., Characterization of the Radon–Nikodym property in terms of inverse limits, 11 Jan 2008, 12 pp., arXiv: 0706.3389v3[math.FA] | MR | Zbl

[12] Cheeger J., Kleiner B., Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodym property, 24 Aug 2008, 17 pp., arXiv: 0808.3249v1[math.MG] | MR

[13] Chi G., “A geometric characterization of Frechet spaces with the RNT”, Proc. Amer. Math. Soc., 48 (1975), 371–380 | MR | Zbl

[14] Davis W. J., “The Radon–Nikodym property”, Seminaire d'analyse fonctionelle, Polytechnique, 1973–1974, 1–12 | MR

[15] Diestel J., Uhl J. J., Vector Measures, Amer. Math. Soc., Providence, 1977 | MR | Zbl

[16] Dunford N., Pettis B. J., “Linear operations on summable functions”, Trans. Amer. Math. Soc., 47 (1940), 323–392 | DOI | MR | Zbl

[17] Gilliam D., “Geometry and the Radon–Nikodym theorems in strict Mackey convergence spaces”, Pacific J. Math., 65:2 (1976), 353–364 | MR | Zbl

[18] Moedomo S., Uhl J. J., “Radon–Nikodym theorems for the Bochner and Pettis integrals”, Pacific J. Math., 38:2 (1971), 531–536 | MR | Zbl

[19] Orlov I. V., Stonyakin F. S., “Compact variation, compact subdifferential and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl

[20] Orlov I. V., Stonyakin F. S., “Strong compact properties of the mappings and K-property of Radon–Nikodym”, Methods Funct. Anal. Topology (to appear)

[21] Phillips R. S., “On weakly compact subsets of a Banach space”, Amer. J. Math., 65:3 (1943), 108–136 | DOI | MR | Zbl

[22] Rieffel M. A., “The Radon–Nikodym theorem for the Bochner integral”, Trans. Amer. Math. Soc., 131 (1968), 466–487 | DOI | MR | Zbl

[23] Shaefer H. H., Topological vector spaces, McMillan, New York–London, 1966