Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_37_a4, author = {I. V. Orlov and F. S. Stonyakin}, title = {The limiting form of the {Radon--Nikodym} property is true for all {Fr\'echet} spaces}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {55--69}, publisher = {mathdoc}, volume = {37}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/} }
TY - JOUR AU - I. V. Orlov AU - F. S. Stonyakin TI - The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 55 EP - 69 VL - 37 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/ LA - ru ID - CMFD_2010_37_a4 ER -
%0 Journal Article %A I. V. Orlov %A F. S. Stonyakin %T The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 55-69 %V 37 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/ %G ru %F CMFD_2010_37_a4
I. V. Orlov; F. S. Stonyakin. The limiting form of the Radon--Nikodym property is true for all Fr\'echet spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 55-69. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a4/
[1] Danford N., Shvarts Dzh. T, Lineinye operatory. Obschaya teoriya, IL, M., 1962
[2] Orlov I. V., “Skhodimost pochti vsyudu kak skhodimost v nelineinoi induktivnoi shkale lokalno vypuklykh prostranstv”, Uchenye zapiski Tavricheskogo nats. universiteta. Matematika, 14:53 (2001), 75–80
[3] Orlov I. V., “Formula konechnykh priraschenii dlya otobrazhenii v induktivnye shkaly prostranstv”, Matematicheskaya fizika, analiz, geometriya (MAG), 8:4 (2001), 419–439 | MR | Zbl
[4] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy: formula konechnykh priraschenii i smezhnye rezultaty”, Sovremennaya matematika. Fundamentalnye napravleniya, 34, 2009, 121–138 | MR
[5] Trenogin V. A., Pisarevskii B. M., Soboleva T. S., Zadachi i uprazhneniya po funktsionalnomu analizu, Nauka, M., 1984 | MR | Zbl
[6] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[7] Arvanitakis A. D., Avilés A., Some examples of continuous images of Radon–Nikodym compact spaces, 3 Mar 2009, 11 pp., arXiv: 0903.0653v1[math.GN] | MR
[8] Berezansky Yu. M., Sheftel Z. Gr., Us G. F., Functional Analysis, v. 1, Birkhäuser Verlag, Basel–Boston–Berlin, 1995
[9] Bu Q., Buskes G., Wei-Kai L., “The Radon–Nikodym property for tensor products of banach lattices, II”, Positivity, 12 (2008), 45–54 | DOI | MR | Zbl
[10] Chakraborty N. D., Jaker Ali Sk., “Type II-$\Lambda$-weak Radon–Nikodym property in a Banach space associated with a compact metrizable abelian group”, Extracta Math., 23:3 (2008), 201–216 | MR | Zbl
[11] Cheeger J., Kleiner B., Characterization of the Radon–Nikodym property in terms of inverse limits, 11 Jan 2008, 12 pp., arXiv: 0706.3389v3[math.FA] | MR | Zbl
[12] Cheeger J., Kleiner B., Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodym property, 24 Aug 2008, 17 pp., arXiv: 0808.3249v1[math.MG] | MR
[13] Chi G., “A geometric characterization of Frechet spaces with the RNT”, Proc. Amer. Math. Soc., 48 (1975), 371–380 | MR | Zbl
[14] Davis W. J., “The Radon–Nikodym property”, Seminaire d'analyse fonctionelle, Polytechnique, 1973–1974, 1–12 | MR
[15] Diestel J., Uhl J. J., Vector Measures, Amer. Math. Soc., Providence, 1977 | MR | Zbl
[16] Dunford N., Pettis B. J., “Linear operations on summable functions”, Trans. Amer. Math. Soc., 47 (1940), 323–392 | DOI | MR | Zbl
[17] Gilliam D., “Geometry and the Radon–Nikodym theorems in strict Mackey convergence spaces”, Pacific J. Math., 65:2 (1976), 353–364 | MR | Zbl
[18] Moedomo S., Uhl J. J., “Radon–Nikodym theorems for the Bochner and Pettis integrals”, Pacific J. Math., 38:2 (1971), 531–536 | MR | Zbl
[19] Orlov I. V., Stonyakin F. S., “Compact variation, compact subdifferential and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl
[20] Orlov I. V., Stonyakin F. S., “Strong compact properties of the mappings and K-property of Radon–Nikodym”, Methods Funct. Anal. Topology (to appear)
[21] Phillips R. S., “On weakly compact subsets of a Banach space”, Amer. J. Math., 65:3 (1943), 108–136 | DOI | MR | Zbl
[22] Rieffel M. A., “The Radon–Nikodym theorem for the Bochner integral”, Trans. Amer. Math. Soc., 131 (1968), 466–487 | DOI | MR | Zbl
[23] Shaefer H. H., Topological vector spaces, McMillan, New York–London, 1966