Banach--Zaretsky theorem for compactly absolutely continuous mappings
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 38-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings of an interval into locally convex spaces, convex and compact convex analogs of absolute continuity, bounded variation, and the Luzin $N$-property are introduced and studied. We prove that, in the general case, a convex analog of the Banach–Zaretsky criteria can be “split” into sufficient and necessary conditions. However, in the Fréchet-space case, we have an exact compact analog of the criteria.
@article{CMFD_2010_37_a3,
     author = {I. V. Orlov},
     title = {Banach--Zaretsky theorem for compactly absolutely continuous mappings},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {38--54},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Banach--Zaretsky theorem for compactly absolutely continuous mappings
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 38
EP  - 54
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/
LA  - ru
ID  - CMFD_2010_37_a3
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Banach--Zaretsky theorem for compactly absolutely continuous mappings
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 38-54
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/
%G ru
%F CMFD_2010_37_a3
I. V. Orlov. Banach--Zaretsky theorem for compactly absolutely continuous mappings. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 38-54. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/

[1] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy otobrazhenii: formula konechnykh priraschenii i smezhnye rezultaty”, Sovremennaya matematika. Fundamentalnye napravleniya, 34, 2009, 121–138 | MR

[2] Bogachev V. I., Osnovy teorii mery, v. 1, RC Dynamics, Moskva–Izhevsk, 2006

[3] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[4] Orlov I. V., “Gilbertovy kompakty, kompaktnye ellipsoidy i kompaktnye ekstremumy”, Sovremennaya matematika. Fundamentalnye napravleniya, 29, 2008, 165–175 | MR

[5] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona–Nikodima spravedliva v lyubom prostranstve Freshe”, Sovremennaya matematika. Fundamentalnye napravleniya (to appear)

[6] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[7] Malamud M. M., Malamud S. M., “Spectral theory of operator measures in Hilbert space”, St. Petersburg Math. J., 15:3 (2004), 323–373 | DOI | MR | Zbl

[8] I. V. Orlov, F. S. Stonyakin, “Compact variation, compact subdifferential and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl

[9] Orlov I. V., Stonyakin F. S., “Strong compact properties of the mappings and K-property of Radon–Nikodym”, Methods Funct. Anal. Topology (to appear)