Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_37_a3, author = {I. V. Orlov}, title = {Banach--Zaretsky theorem for compactly absolutely continuous mappings}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {38--54}, publisher = {mathdoc}, volume = {37}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/} }
I. V. Orlov. Banach--Zaretsky theorem for compactly absolutely continuous mappings. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 38-54. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/
[1] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy otobrazhenii: formula konechnykh priraschenii i smezhnye rezultaty”, Sovremennaya matematika. Fundamentalnye napravleniya, 34, 2009, 121–138 | MR
[2] Bogachev V. I., Osnovy teorii mery, v. 1, RC Dynamics, Moskva–Izhevsk, 2006
[3] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[4] Orlov I. V., “Gilbertovy kompakty, kompaktnye ellipsoidy i kompaktnye ekstremumy”, Sovremennaya matematika. Fundamentalnye napravleniya, 29, 2008, 165–175 | MR
[5] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona–Nikodima spravedliva v lyubom prostranstve Freshe”, Sovremennaya matematika. Fundamentalnye napravleniya (to appear)
[6] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[7] Malamud M. M., Malamud S. M., “Spectral theory of operator measures in Hilbert space”, St. Petersburg Math. J., 15:3 (2004), 323–373 | DOI | MR | Zbl
[8] I. V. Orlov, F. S. Stonyakin, “Compact variation, compact subdifferential and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl
[9] Orlov I. V., Stonyakin F. S., “Strong compact properties of the mappings and K-property of Radon–Nikodym”, Methods Funct. Anal. Topology (to appear)