Banach--Zaretsky theorem for compactly absolutely continuous mappings
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 38-54

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings of an interval into locally convex spaces, convex and compact convex analogs of absolute continuity, bounded variation, and the Luzin $N$-property are introduced and studied. We prove that, in the general case, a convex analog of the Banach–Zaretsky criteria can be “split” into sufficient and necessary conditions. However, in the Fréchet-space case, we have an exact compact analog of the criteria.
@article{CMFD_2010_37_a3,
     author = {I. V. Orlov},
     title = {Banach--Zaretsky theorem for compactly absolutely continuous mappings},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {38--54},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Banach--Zaretsky theorem for compactly absolutely continuous mappings
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 38
EP  - 54
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/
LA  - ru
ID  - CMFD_2010_37_a3
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Banach--Zaretsky theorem for compactly absolutely continuous mappings
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 38-54
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/
%G ru
%F CMFD_2010_37_a3
I. V. Orlov. Banach--Zaretsky theorem for compactly absolutely continuous mappings. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 38-54. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a3/