On a~class of strongly contractive quadratic recurrent systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of nonlinear recurrent systems of the form $\Lambda_p=\frac1p\sum_{p_1=1}^{p-1} f(\frac {p_1}p)\Lambda_{p_1}\Lambda_{p-p_1}$, $p>1$, where f is a given function on the interval $[0,1]$ and $\Lambda_1=x$ is an adjustable real-valued parameter. Under some suitable assumptions on the function $f$, we show that there exists an initial value $x^*$ for which $\Lambda_p=\Lambda_p(x^*)\to\mathrm{const}$ as $p\to\infty$. More precise asymptotics of $\Lambda_p$ is also derived.
@article{CMFD_2010_36_a8,
     author = {D. Li},
     title = {On a~class of strongly contractive quadratic recurrent systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a8/}
}
TY  - JOUR
AU  - D. Li
TI  - On a~class of strongly contractive quadratic recurrent systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 112
EP  - 124
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a8/
LA  - ru
ID  - CMFD_2010_36_a8
ER  - 
%0 Journal Article
%A D. Li
%T On a~class of strongly contractive quadratic recurrent systems
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 112-124
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a8/
%G ru
%F CMFD_2010_36_a8
D. Li. On a~class of strongly contractive quadratic recurrent systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 112-124. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a8/

[1] Li D., “On a nonlinear recurrence relation”, J. Stat. Phys. (to appear)

[2] Li D., Sinai Ya. G., “Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method”, J. Eur. Math. Soc., 10:2 (2008), 267–313 | MR | Zbl

[3] Li D., Sinai Ya. G., “Complex singularities of the Burgers system and renormalization group method”, Current developments in mathematics, 2006, Int. Press, Somerville, 2008, 181–210 | MR | Zbl

[4] Li D., Sinai Ya. G., “Complex singularities of solutions of some 1D hydrodynamic models”, Phys. D, 237:14–17 (2008), 1945–1950 | MR | Zbl

[5] Sinai Ya. G., “On a separating solution of a recurrent equation”, Regul. Chaotic Dyn., 12:5 (2007), 490–501 | DOI | MR