A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 72-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Small eigenfunctions of a nonlinear periodic boundary-value problem are studied for the case of double degeneration of the eigenvalue of the linearized problem; the quasilinear representation is used.
@article{CMFD_2010_36_a6,
     author = {Ya. M. Dymarskii and D. N. Nepiypa},
     title = {A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {72--86},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
AU  - D. N. Nepiypa
TI  - A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 72
EP  - 86
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/
LA  - ru
ID  - CMFD_2010_36_a6
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%A D. N. Nepiypa
%T A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 72-86
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/
%G ru
%F CMFD_2010_36_a6
Ya. M. Dymarskii; D. N. Nepiypa. A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 72-86. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR | Zbl

[4] Dymarskii Ya. M., “Metod mnogoobrazii v teorii sobstvennykh vektorov nelineinykh operatorov”, SMFN, 24, 2007, 3–159 | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[6] Krasnoselskii V. M., “Proektsionnyi metod issledovaniya bifurkatsii nulevogo resheniya nelineinogo operatornogo uravneniya pri mnogomernom vyrozhdenii”, Dokl. AN SSSR, 198:6 (1971), 1265–1268 | MR

[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR

[8] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[9] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[10] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[11] Dzh. Keller, S. Antman (red.), Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974

[12] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR