Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_36_a6, author = {Ya. M. Dymarskii and D. N. Nepiypa}, title = {A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {72--86}, publisher = {mathdoc}, volume = {36}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/} }
TY - JOUR AU - Ya. M. Dymarskii AU - D. N. Nepiypa TI - A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 72 EP - 86 VL - 36 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/ LA - ru ID - CMFD_2010_36_a6 ER -
%0 Journal Article %A Ya. M. Dymarskii %A D. N. Nepiypa %T A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 72-86 %V 36 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/ %G ru %F CMFD_2010_36_a6
Ya. M. Dymarskii; D. N. Nepiypa. A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 72-86. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a6/
[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl
[2] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl
[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR | Zbl
[4] Dymarskii Ya. M., “Metod mnogoobrazii v teorii sobstvennykh vektorov nelineinykh operatorov”, SMFN, 24, 2007, 3–159 | MR | Zbl
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[6] Krasnoselskii V. M., “Proektsionnyi metod issledovaniya bifurkatsii nulevogo resheniya nelineinogo operatornogo uravneniya pri mnogomernom vyrozhdenii”, Dokl. AN SSSR, 198:6 (1971), 1265–1268 | MR
[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR
[8] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[9] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[10] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[11] Dzh. Keller, S. Antman (red.), Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974
[12] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR