On integral equations of stationary distributions for biological systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 50-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, properties of solutions of the convolution-type integral equation $(1+w(x))P(x)=(m*P)(x)+Cm(x)$ on the real axis are studied. The main concern is to find conditions for the function $w(x)$ and the kernel $m(x)$ sufficient for the existence of an admissible solution $P(x)$, i.e., a solution which has a nonzero limit at infinity. The main results of the paper are the uniqueness theorem for the admissible solution for rapidly decreasing kernels $m$ and the existence theorem for one-sided compactly supported kernels m.
@article{CMFD_2010_36_a4,
     author = {V. I. Danchenko and R. V. Rubay},
     title = {On integral equations of stationary distributions for biological systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - R. V. Rubay
TI  - On integral equations of stationary distributions for biological systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 50
EP  - 60
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/
LA  - ru
ID  - CMFD_2010_36_a4
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A R. V. Rubay
%T On integral equations of stationary distributions for biological systems
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 50-60
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/
%G ru
%F CMFD_2010_36_a4
V. I. Danchenko; R. V. Rubay. On integral equations of stationary distributions for biological systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 50-60. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/

[1] Davydov A. A., Danchenko V. I., Zvyagin M. Yu., “Suschestvovanie i edinstvennost statsionarnogo raspredeleniya biologicheskogo soobschestva”, Trudy MIAN, 267, 2009, 46–55 | Zbl

[2] Danchenko V. I., Davydov A. A., Dikman U., “Suschestvovanie i svoistva statsionarnykh prostranstvennykh raspredelenii biologicheskikh soobschestv”, Mezhdunar. konf. po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 27 iyunya – 2 iyulya 2008 g.), 80–81

[3] Danchenko V. I., Davydov A. A., Nikitin A. A., “Ob integralnom uravnenii dlya statsionarnykh raspredelenii biologicheskikh soobschestv”, Problemy dinamicheskogo upravleniya, Sb. nauchnykh trudov fakulteta VMiK MGU im. M. V. Lomonosova, 3, eds. Yu. S. Osipov, A. V. Kryazhimskii, Izd. otdel f-ta VMiK MGU, M., 2008, 32–45

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2006

[5] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978

[6] Rubai R. V., “Ob odnom ratsionalnom reshenii uravneniya Ulfa”, Mezhdunar. konf. po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 27 iyunya – 2 iyulya 2008 g.), 213–215

[7] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[8] Dieckmann U., Law R., “Moment approximations of individual-based models”, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, eds. U. Dieckmann, R. Law, J. A. J. Metz, Cambridge Univ. Press, Cambridge, 2000, 252–270

[9] Dieckmann U., Law R., “Relaxation projections and the method of moments”, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, eds. U. Dieckmann, R. Law, J. A. J. Metz, Cambridge Univ. Press, Cambridge, 2000, 412–455