On integral equations of stationary distributions for biological systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 50-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, properties of solutions of the convolution-type integral equation $(1+w(x))P(x)=(m*P)(x)+Cm(x)$ on the real axis are studied. The main concern is to find conditions for the function $w(x)$ and the kernel $m(x)$ sufficient for the existence of an admissible solution $P(x)$, i.e., a solution which has a nonzero limit at infinity. The main results of the paper are the uniqueness theorem for the admissible solution for rapidly decreasing kernels $m$ and the existence theorem for one-sided compactly supported kernels m.
@article{CMFD_2010_36_a4,
     author = {V. I. Danchenko and R. V. Rubay},
     title = {On integral equations of stationary distributions for biological systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - R. V. Rubay
TI  - On integral equations of stationary distributions for biological systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 50
EP  - 60
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/
LA  - ru
ID  - CMFD_2010_36_a4
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A R. V. Rubay
%T On integral equations of stationary distributions for biological systems
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 50-60
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/
%G ru
%F CMFD_2010_36_a4
V. I. Danchenko; R. V. Rubay. On integral equations of stationary distributions for biological systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 50-60. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a4/