Boundary-value problems for the Helmholtz equation and their discrete mathematical models
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 36-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary-value problems of mathematical diffraction theory and discuss the possibility of reducing them to boundary hypersingular integral equations and solving them numerically. The analytic technique of parametric representations of pseudodifferential and integral operators and the numerical method of discrete singularities are essentially used. We discuss the reasoning in applying this approach to constructing mathematical models of wave diffraction problems and solving them numerically.
@article{CMFD_2010_36_a3,
     author = {Yu. V. Gandel'},
     title = {Boundary-value problems for the {Helmholtz} equation and their discrete mathematical models},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {36--49},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a3/}
}
TY  - JOUR
AU  - Yu. V. Gandel'
TI  - Boundary-value problems for the Helmholtz equation and their discrete mathematical models
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 36
EP  - 49
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a3/
LA  - ru
ID  - CMFD_2010_36_a3
ER  - 
%0 Journal Article
%A Yu. V. Gandel'
%T Boundary-value problems for the Helmholtz equation and their discrete mathematical models
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 36-49
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a3/
%G ru
%F CMFD_2010_36_a3
Yu. V. Gandel'. Boundary-value problems for the Helmholtz equation and their discrete mathematical models. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 36-49. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a3/

[1] Antonets A. V., Gandel Yu. V., “Chislennyi analiz gipersingulyarnogo integralnogo uravneniya zadach difraktsii na ploskom ekrane”, Vestn. Khark. nats. un-ta, 590, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 1 (2003), 9–14

[2] Bulygin V. S., “Skalyarnaya tretya kraevaya zadacha matematicheskoi teorii difraktsii na ploskom ekrane i ee diskretnaya matematicheskaya model”, Vestn. Khark. nats. un-taupravleniya, 775, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 7 (2007), 62–72

[3] Bulygin V. S., Gandel Yu. V., “Kraevye zadachi dlya 3-D uravnenii Gelmgoltsa, granichnye psevdodifferentsialnye uravneniya i chislennyi eksperiment”, Kraiovi zadachi dlya diferentsialnikh rivnyan, 17 (2008), 210–234

[4] Gandel Yu. V., “O parnykh ryadakh Fure nekotorykh smeshannykh kraevykh zadach matematicheskoi fiziki”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 38 (1982), 15–18 | MR | Zbl

[5] Gandel Yu. V., “O parnykh integralnykh uravneniyakh, privodyaschikh k singulyarnomu integralnomu uravneniyu na sisteme otrezkov”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 40 (1983), 33–36 | MR | Zbl

[6] Gandel Yu. V., “Metod diskretnykh osobennostei v zadachakh elektrodinamiki”, Voprosy kibernetiki, 124, 1986, 166–183 | Zbl

[7] Gandel Yu. V., Eremenko S. V., Polyanskaya T. S., Matematicheskie voprosy metoda diskretnykh tokov. Obosnovanie chislennogo metoda diskretnykh osobennostei dvumernykh zadach difraktsii elektromagnitnykh voln, Ucheb. posobie. ch. II, Izd-vo Khark. un-ta, Kharkov, 1992

[8] Gandel Yu. V., “Parametricheskoe predstavlenie singulyarnykh integralnykh preobrazovanii i kraevye zadachi matematicheskoi fiziki (difraktsiya elektromagnitnykh voln na mnogoelementnykh reshetkakh)”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya, In-t mat. NAN Ukrainy, Kiev, 1995, 65–66

[9] Gandel Yu. V., “Metod parnykh i singulyarnykh integralnykh uravnenii v zadachakh difraktsii na ogranichennykh reshetkakh”, Elektromagnitnye yavleniya, 1:2 (1998), 220–232

[10] Gandel Yu. V., Lektsii o chislennykh metodakh dlya singulyarnykh integralnykh uravnenii, Ucheb. posobie, v. 1, Vvedenie v metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, Izd-vo Khark. nats. un-ta, Kharkov, 2001

[11] Gandel Yu. V., “Parnye i gipersingulyarnye integralnye uravneniya zadach difraktsii elektromagnitnykh voln na ploskikh reshetkakh i ekranakh”, Tr. XI Mezhdunar. simp. “Metody diskretnykh osobennostei v zadachakh matematicheskoi fiziki”, 2003, 53–58

[12] Gandel Yu. V., “Granichnye gipersingulyarnye integralnye uravneniya kraevykh zadach dlya uravnenii Gelmgoltsa i ikh diskretnye matematicheskie modeli”, Tarapovskie chteniya, Sb. materialov mezhdunar. nauch. shkoly-konferentsii, Khark. nats. un-t, Kharkov, 2008, 23–25

[13] Gandel Yu. V., “Parametricheskie predstavleniya psevdodifferentsialnykh operatorov i granichnye uravneniya smeshannykh kraevykh zadach matematicheskoi teorii difraktsii”, Tez. dokl. mezhdunar. konf. “Funktsionalnye prostranstva. Differentsialnye operatory. Obschaya topologiya. Problemy matematicheskogo obrazovaniya”, posv. 85-letiyu L. D. Kudryavtseva, MFTI, Moskva, 2008, 244–246

[14] Gandel Yu. V., Kononenko A. S., “Matematicheskaya model girotrona s razlichnymi dielektricheskimi pronitsaemostyami sred v rabochei zone i gofrakh rezonatora”, Dopovidi Natsionalnoï akademiï nauk Ukraïni, 2005, no. 10, 70–74

[15] Gandel Yu. V., Kononenko A. S., “Matematicheskaya model dlya polnogo volnovogo analiza koaksialnogo girotrona na baze granichnykh integralnykh uravnenii”, Thesis on Conf. Reports, Dynamical System Modelling and Stability Investigation, Kiev, 2005 | Zbl

[16] Gandel Yu. V., Kononenko A. S., “Obosnovanie chislennogo resheniya odnogo gipersingulyarnogo integralnogo uravneniya”, Differents. uravn., 42:9 (2006), 1256–1262 | MR | Zbl

[17] Gandel Yu. V., Kononenko A. S., “Gipersingulyarnoe integralnoe uravnenie matematicheskoi modeli girotrona dlya sluchaya TM voln”, Vestn. Khark. nats. un-ta, 661, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 4 (2005), 83–88

[18] Gandel Yu. V., Kononenko A. S., “Gipersingulyarnoe integralnoe uravnenie pervogo roda obschego vida i ego diskretnaya matematicheskaya model”, Tr. XIII Mezhdunar. simp. “Metody diskretnykh osobennostei v zadachakh matematicheskoi fiziki”, Kharkov, 2007, 91–94

[19] Gandel Yu. V., Kononenko A. S., Polyanskaya T. S., “Obosnovanie diskretnoi matematicheskoi modeli gipersingulyarnogo integralnogo uravneniya na sisteme otrezkov”, Vestn. Khark. nats. un-ta, 780, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 8 (2007), 71–78

[20] Gandel Yu. V., Mischenko V. O., “Psevdodifferentsialnye uravneniya elektromagnitnoi difraktsii na ploskoparallelnoi strukture i ikh diskretnaya model”, Vestn. Khark. nats. un-ta, 733, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 6 (2006), 58–75

[21] Gakhov A. V., “Matematicheskoe modelirovanie rasseyaniya akusticheskikh voln na zhestkom ekrane v sloisto-neodnorodnom poluprostranstve”, Vestn. Khark. nats. un-ta, 775, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 7 (2007), 92–98

[22] Gakhov A. V., Mischenko V. O., “Trekhmernaya model metoda diskretnykh osobennostei rasseyaniya skalyarnykh voln ekranom na granitse razdela sred”, Vestn. Khersonskogo nats. tekhn. un-ta, 2006, no. 2(25), 135–140

[23] Kononenko A. S., “Matematicheskaya model dlya chislennogo issledovaniya TM voln koaksialnogo girotrona s gofrirovannoi vstavkoi”, Vestn. Khark. nats. un-ta, 710, Ser. fizicheskaya “Yadra, chastitsy, polya”, Vyp. 3 (2005), 118–122

[24] Mischenko V. O., “Gibkaya model priblizhennykh vychislenii yader dvumernykh gipersingulyarnykh operatorov i arkhitektura programmnoi realizatsii”, Vestn. Khark. nats. un-ta, 809, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 9 (2008), 132–147

[25] Mischenko V. O., “Postroenie programmnykh sistem modelirovaniya difraktsii na idealno provodyaschikh ekranakh, lezhaschikh v dielektricheskom poluprostranstve”, Vestn. Khark. nats. un-ta, 833, Ser. Matematicheskoe modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, Vyp. 10 (2008), 170–184

[26] Akhiezer N. I., Lectures on Integral Transforms, Transl. Math. Monogr., 70, Amer. Math. Soc., Providence, 1988 | MR | Zbl

[27] Dumbrajs O., Gandel Yu. V., Schuenemann K., Zaginaylov G. I., Kononenko A. S., “Full wave analysis of coaxial cavity gyrotrons”, Proc. 10th Triennial ITG-Conf. on Displays and Vacuum Electronics, Garmisch-Partenkirchen, Germany, 2004, 75–80

[28] Gandel Yu. V., “Parametric representations of integral and psevdodifferential operators in diffraction problems”, 10th Int. Conf. on Math. Methods in Electromagnetic Theory, Conf. Proc. (Dnipropetrovsk, Ukraine, September 14–17, 2004), 57–62

[29] Gandel Yu. V., “Boundary-value problems for the Helmholtz equation and their discrete models”, The Fifth Int. Conf. on Differential and Functional Differential Equations, Abstracts (Moscow, Russia, August, 2008), 92–93

[30] Gandel Yu. V., Kononenko A. S., “Mathematical model of a cavity gyrotrons on the basis of hypersingular integral equations”, 10th Int. Conf. on Math. Methods in Electromagnetic Theory, Conf. Proc. (Dnipropetrovsk, Ukraine, September 14–17, 2004), 559–561

[31] Kononenko A. S., Gandel Yu. V., “Rigorous mathematical model and simulation for TM waves in coaxial cavity gyrotrons”, 11th Int. Conf. on Math. Methods in Electromagnetic Theory, Conf. Proc., Kharkiv, 2006, 535–537

[32] Kononenko A. S., Gandel Yu. V., “Standing waves in a coaxial cavity gyrotron with a corrugated insert”, Proc. of the Asia Pacific Microwave Conf., Yokohama, Japan, 2006, 1300–1303

[33] Kononenko A. S., Gandel Yu. V., “Theoretical and numerical investigations of TE and TM modes in coaxial cavity gyrotron”, Proc. of the 36th European Microwave Conf., Manchester, UK, 2006, 1115–1118

[34] Kononenko A. S., Gandel Yu. V., “Mathematical model of ohmic losses in a coaxial cavity gyrotron with a corrugated insert”, Proc. 6th Int. Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkiv, 2007, 292–294

[35] Kononenko A. S., Gandel Yu. V., “Singular and hypersingular integral equations techniques for gyrotron coaxial resonators with a corrugated insert”, Int. J. Infared Millimeter Waves, 28:4 (2007), 267–274 | DOI | MR

[36] Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular Integral Equations and Their Application, CRC Press, London, 2004 | MR | Zbl

[37] Lifanov I. K., Singular Integral Equations and Discrete Vortices, VNU Science Press, Utrecht, 1996 | MR