On left-invariant H\"ormander operators in $\mathbb R^N$ applications to Kolmogorov--Fokker--Planck equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 24-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\mathcal L=\sum_{j=1}^mX_j^2+X_0$ is a Hörmander partial differential operator in $\mathbb R^N$, we give sufficient conditions on the $X_{j^\mathrm S}$ for the existence of a Lie group structure $\mathbb G=(\mathbb R^N,*)$, not necessarily nilpotent, such that $\mathcal L$ is left invariant on $\mathbb G$. We also investigate the existence of a global fundamental solution $\Gamma$ for $\mathcal L$, providing results that ensure a suitable left-invariance property of $\Gamma$. Examples are given for operators $\mathcal L$ to which our results apply: some are new; some have appeared in recent literature, usually quoted as Kolmogorov–Fokker–Planck-type operators. Nontrivial examples of homogeneous groups are also given.
@article{CMFD_2010_36_a2,
     author = {A. Bonfiglioli and E. Lanconelli},
     title = {On left-invariant {H\"ormander} operators in $\mathbb R^N$ applications to {Kolmogorov--Fokker--Planck} equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a2/}
}
TY  - JOUR
AU  - A. Bonfiglioli
AU  - E. Lanconelli
TI  - On left-invariant H\"ormander operators in $\mathbb R^N$ applications to Kolmogorov--Fokker--Planck equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 24
EP  - 35
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a2/
LA  - ru
ID  - CMFD_2010_36_a2
ER  - 
%0 Journal Article
%A A. Bonfiglioli
%A E. Lanconelli
%T On left-invariant H\"ormander operators in $\mathbb R^N$ applications to Kolmogorov--Fokker--Planck equations
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 24-35
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a2/
%G ru
%F CMFD_2010_36_a2
A. Bonfiglioli; E. Lanconelli. On left-invariant H\"ormander operators in $\mathbb R^N$ applications to Kolmogorov--Fokker--Planck equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 24-35. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a2/

[1] August J., Zucker S. W., “Sketches with curvature: the curve indicator random field and Markov processes”, IEEE Trans. Pattern Anal. Machine Intelligence, 25 (2003), 387–400 | DOI

[2] Bonfiglioli A., Lanconelli E., Lie groups constructed from Hörmander operators. Fundamental solutions and applications to Kolmogorov–Fokker–Planck equations, Preprint, 2008

[3] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer-Verlag, New York, 2007 | MR | Zbl

[4] Bramanti M., “Singular integrals in nonhomogenoeus spaces: $l^2$ and $l^p$ continuity from Hölder estimates”, J. Amer. Math. Soc. (to appear)

[5] Bramanti M., Brandolini L., “$L^p$-estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups”, Rend. Sem. Mat. Univ. Politec. Torino, 58 (2000), 389–433 | MR

[6] Bramanti M., Cupini G., Lanconelli E., Priola E., Maximal regularity in $l^p$-spaces for degenerate Ornstein–Uhlenbeck operator, Preprint, 2008

[7] Da Prato G., Kolmogorov equations for stochastic PDEs, Birkhäuser-Verlag, Basel, 2004 | MR | Zbl

[8] Da Prato G., Lunardi A., “Ornstein–Uhlenbeck operators with time periodic coefficients”, J. Evolution Equations, 7 (2007), 587–614 | DOI | MR | Zbl

[9] Da Prato G., Lunardi A., “On a class of self-adjoint elliptic operators in $L^2$ spaces with respect to invariant measures”, J. Differ. Equations, 234 (2007), 54–79 | DOI | MR | Zbl

[10] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[11] Fefferman C. L., Sánchez-Calle A., “Fundamental solutions for second order subelliptic operators”, Ann. Math., 124 (1986), 247–272 | DOI | MR | Zbl

[12] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13 (1975), 161–207 | DOI | MR | Zbl

[13] Hörmander L., “Hypoelliptic second-order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[14] Jerison D., Sánchez-Calle A., “Estimates for the heat kernel for a sum of squares of vector fields”, Indiana Univ. Math. J., 35 (1986), 835–854 | DOI | MR | Zbl

[15] Kogoj A. E., Lanconelli E., “An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations”, Mediterr. J. Math., 1 (2004), 51–80 | DOI | MR | Zbl

[16] Kusuoka S., Stroock D., “The partial Malliavin calculus and its application to nonlinear filtering”, Stochastics, 12 (1984), 83–142 | MR | Zbl

[17] Kusuoka S., Stroock D., “Applications of the Malliavin calculus, II”, J. Math. Sci. Univ. Tokyo Sec. IA, 32 (1985), 1–76 | MR | Zbl

[18] Kusuoka S., Stroock D., “Applications of the Malliavin calculus, III”, J. Math. Sci. Univ. Tokyo Sec. IA, 34 (1987), 391–442 | MR | Zbl

[19] Kusuoka S., Stroock D., “Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator”, Ann. Math. (2), 127 (1988), 165–189 | DOI | MR | Zbl

[20] Lanconelli E., Polidoro S., “On a class of hypoelliptic evolution operators”, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29–63 | MR | Zbl

[21] Mumford D., “Elastica and computer vision”, Algebraic geometry and its applications, Springer-Verlag, New York, 1994, 491–506 | MR | Zbl

[22] Pascucci A., “Free boundary and optimal stopping problems for American Asian options”, Finance Stoch., 12 (2008), 21–41 | DOI | MR | Zbl

[23] Rothschild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR

[24] Sánchez-Calle A., “Fundamental solutions and geometry of the sum of squares of vector fields”, Invent. Math., 78 (1984), 143–160 | DOI | MR | Zbl

[25] Varopoulos N. T., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[26] Wang Y., Zhou Y., Maslen D. K., Chirikjian G. S., “Solving phase-noise Fokker–Planck equations using the motion-group Fourier transform”, IEEE Trans. Commun., 54 (2006), 868–877 | DOI