Extinction of solutions for some nonlinear parabolic equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We are dealing with the first vanishing time for solutions of the Cauchy–Neumann problem for the semilinear parabolic equation $\partial_t u-\Delta u+a(x)u^q=0$, where $a(x)\ge d_0\exp(-\omega(|x|)/|x|^2)$, $d_0>0$, $1>q>0$, and $\omega$ is a positive continuous radial function. We give a Dini-like condition on the function $\omega$ which implies that any solution of the above equation vanishes in finite time. The proof is derived from semi-classical limits of some Schrödinger operators.
@article{CMFD_2010_36_a0,
     author = {Y. Belaud},
     title = {Extinction of solutions for some nonlinear parabolic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a0/}
}
TY  - JOUR
AU  - Y. Belaud
TI  - Extinction of solutions for some nonlinear parabolic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 5
EP  - 11
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a0/
LA  - ru
ID  - CMFD_2010_36_a0
ER  - 
%0 Journal Article
%A Y. Belaud
%T Extinction of solutions for some nonlinear parabolic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 5-11
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a0/
%G ru
%F CMFD_2010_36_a0
Y. Belaud. Extinction of solutions for some nonlinear parabolic equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 5-11. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a0/

[1] Belaud Y., “Asymptotic estimates for a variational problem involving a quasilinear operator in the semi-classical limit”, Ann. Global Anal. Geom., 26 (2004), 271–313 | DOI | MR | Zbl

[2] Belaud Y., Helffer B., Véron L., “Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator”, Ann. Inst. Poincaré Anal. Non Linéaire, 18 (2001), 43–68 | DOI | MR | Zbl

[3] Belaud Y., Shishkov A. E., “Long-time extinction of solutions of some semilinear parabolic equations”, J. Differ. Equations, 238 (2007), 64–86 | DOI | MR | Zbl

[4] Bers L., John F., Schechter M., Partial Differential Equations, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1964 | MR | Zbl

[5] Helffer B., Semi-classical analysis for the Schrödinger operator and applications, Lect. Notes Math., 1336, Springer-Verlag, 1989 | MR

[6] Kondratiev V. A., Véron L., “Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations”, Asympt. Anal., 14 (1997), 117–156 | MR | Zbl

[7] Kranosel'skii M. A., Rutickii Ya. B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 | MR

[8] Lieb E. H., Thirring W., Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, Princeton Univ. Press, Princeton, 1976 | Zbl

[9] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl

[10] Luxemburg W., Banach function spaces, Ph. D. Thesis, Technisches Hogeschool te Delft, 1955 | MR

[11] Shishkov A. E., “Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order”, Sb. Math., 190:12 (1999), 1843–1869 | DOI | MR | Zbl

[12] Trudinger N. S., “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 7473–483 | MR