On the Moutard transformation and its applications to spectral theory and soliton equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 101-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2010_35_a7,
     author = {I. A. Taimanov and S. P. Tsarev},
     title = {On the {Moutard} transformation and its applications to spectral theory and soliton equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a7/}
}
TY  - JOUR
AU  - I. A. Taimanov
AU  - S. P. Tsarev
TI  - On the Moutard transformation and its applications to spectral theory and soliton equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 101
EP  - 117
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a7/
LA  - ru
ID  - CMFD_2010_35_a7
ER  - 
%0 Journal Article
%A I. A. Taimanov
%A S. P. Tsarev
%T On the Moutard transformation and its applications to spectral theory and soliton equations
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 101-117
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a7/
%G ru
%F CMFD_2010_35_a7
I. A. Taimanov; S. P. Tsarev. On the Moutard transformation and its applications to spectral theory and soliton equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 101-117. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a7/

[1] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha rasseyaniya, Izd-vo Kharkovskogo un-ta, Kharkov, 1960

[2] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[3] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[4] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl

[5] Grinevich P. G., Manakov S. V., “Obratnaya zadacha teorii rasseyaniya dlya dvumernogo operatora Shredingera, $\bar\partial$-metod i nelineinye uravneniya”, Funkts. analiz i ego pril., 20:2 (1986), 14–24 | MR | Zbl

[6] Grinevich P. G., Novikov S. P., “Dvumernaya “obratnaya zadacha rasseyaniya” dlya otritsatelnykh energii i obobschenno-analiticheskie funktsii. I. Energii nizhe osnovnogo sostoyaniya”, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | MR | Zbl

[7] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980 | MR

[8] Manakov S. V., “Metod obratnoi zadachi i dvumernye solitonnye uravneniya”, Uspekhi mat. nauk, 31:5 (1976), 245–246 | MR | Zbl

[9] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[10] Novikov R. G., Khenkin G. M., “$\bar\partial$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, Uspekhi mat. nauk, 42:3 (1987), 93–152 | MR | Zbl

[11] Taimanov I. A., Tsarev S. P., “Dvumernye operatory Shredingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, Uspekhi mat. nauk, 62:3 (2007), 217–218 | MR | Zbl

[12] Taimanov I. A., Tsarev S. P., “Dvumernye ratsionalnye solitony, postroennye s pomoschyu preobrazovanii Mutara, i ikh raspad”, Teor. i matem. fiz., 157:2 (2008), 188–207 | MR | Zbl

[13] Taimanov I. A., Tsarev S. P., “Raspadayuschiesya resheniya uravneniya Veselova–Novikova”, Dokl. RAN, 420:6 (2008), 744–745 | MR | Zbl

[14] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, Uspekhi mat. nauk, 14:4 (1959), 57–119 | MR | Zbl

[15] Faddeev L. D., “Svoistva $S$-matritsy odnomernogo operatora Shredingera”, Tr. Mat. in-ta AN SSSR, 73, 1964, 314–336 | MR | Zbl

[16] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, 1974, 93–180 | MR | Zbl

[17] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl

[18] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[19] Athorne C., Nimmo J. J. C., “On the Moutard transformation for integrable partial differential equations”, Inverse Problems, 7 (1991), 809–826 | DOI | MR | Zbl

[20] Crum M. M., “Associated Sturm–Liouville systems”, Quart. S. Math., 6 (1955), 121–127 | DOI | MR

[21] Darboux G., “Sur une proposition relative aux équations linéarires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459

[22] Dirac P. A. M., The Principles of Quantum Mechanics, Clarendon Press, Oxford, 1935 | MR

[23] Dubrovin B. A., Krichever I. M., Novikov S. P., “The Schrödinger equation in a periodic field and Riemann surfaces”, Sov. Math. Dokl., 17 (1976), 947–952

[24] Hu Heng-Chun, Lou Sen-Yue, Liu Qing-Ping, “Darboux transformation and variable separation approach: The Nizhnik–Novikov–Veselov equation”, Chinese Phys. Lett., 20 (2003), 1413–1415 | DOI

[25] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl

[26] Kenig C. E., Ponce G., Vega L., “Well-posedness of the inital value problem for the Korteweg–de Vries equation”, J. Amer. Math. Soc., 4 (1991), 323–347 | DOI | MR | Zbl

[27] Matveev V. B., Salle M. A., Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[28] Menikoff A., “The existence of unbounded solutions of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 25 (1972), 407–432 | DOI | MR | Zbl

[29] Moutard T., “Sur la construction des équations de la forme $\frac1z\frac{d^2z}{dxdy}=\lambda(x,y)$, qui admettent une intégrale générale explicite”, J. École Polytechnique, 45 (1878), 1–11

[30] Novikov S. P., Veselov A. P., “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Trans. Amer. Math. Soc., 179 (1997), 109–132 | MR | Zbl

[31] Schrödinger E., “Method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 ; “Further studies on solving eigenvalue problems by factorization”, Ibid, 46 (1940), 183–206 ; “The factorization of the hypergeometric equation”, Ibid, 47 (1941), 53–54 | MR | Zbl | MR | MR | Zbl

[32] Wahlquist H., Estabrook F. B., “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31 (1973), 1386–1390 | DOI | MR