$\mathbb S^1$-Valued Sobolev maps
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 86-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the space $W^{s,p}(\mathbb S^n;\mathbb S^1)$, where $0$, $1\le p\infty$. According to the values of $s$, $p$ and $n$, maps in $W^{s,p}(\mathbb S^n;\mathbb S^1)$ can either be characterised by their phases or by a couple (singular set, phase). Here are two examples: $W^{1/2,6}(\mathbb S^3;\mathbb S^1)=\{e^{\imath\varphi}\colon\varphi\in W^{1/2,6}+W^{1,3}\}$, $W^{1/2,3}(\mathbb S^2;\mathbb S^1)\approx D\times\{e^{\imath\varphi}\colon\varphi\in W^{1/2,3}+W^{1,3/2}\}$. In the second example, $D$ is an appropriate set of infinite sums of Dirac masses. The sense of $\approx$ will be explained in the paper. The presentation is based on the papers of H.-M. Nguyen [22], of the author [20], and on a joint forthcoming paper of H. Brezis, H.-M. Nguyen, and the author [15].
@article{CMFD_2010_35_a6,
     author = {P. Mironescu},
     title = {$\mathbb S^1${-Valued} {Sobolev} maps},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {86--100},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/}
}
TY  - JOUR
AU  - P. Mironescu
TI  - $\mathbb S^1$-Valued Sobolev maps
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 86
EP  - 100
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/
LA  - ru
ID  - CMFD_2010_35_a6
ER  - 
%0 Journal Article
%A P. Mironescu
%T $\mathbb S^1$-Valued Sobolev maps
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 86-100
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/
%G ru
%F CMFD_2010_35_a6
P. Mironescu. $\mathbb S^1$-Valued Sobolev maps. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 86-100. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/