$\mathbb S^1$-Valued Sobolev maps
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 86-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the space $W^{s,p}(\mathbb S^n;\mathbb S^1)$, where $0$, $1\le p\infty$. According to the values of $s$, $p$ and $n$, maps in $W^{s,p}(\mathbb S^n;\mathbb S^1)$ can either be characterised by their phases or by a couple (singular set, phase). Here are two examples: $W^{1/2,6}(\mathbb S^3;\mathbb S^1)=\{e^{\imath\varphi}\colon\varphi\in W^{1/2,6}+W^{1,3}\}$, $W^{1/2,3}(\mathbb S^2;\mathbb S^1)\approx D\times\{e^{\imath\varphi}\colon\varphi\in W^{1/2,3}+W^{1,3/2}\}$. In the second example, $D$ is an appropriate set of infinite sums of Dirac masses. The sense of $\approx$ will be explained in the paper. The presentation is based on the papers of H.-M. Nguyen [22], of the author [20], and on a joint forthcoming paper of H. Brezis, H.-M. Nguyen, and the author [15].
@article{CMFD_2010_35_a6,
     author = {P. Mironescu},
     title = {$\mathbb S^1${-Valued} {Sobolev} maps},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {86--100},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/}
}
TY  - JOUR
AU  - P. Mironescu
TI  - $\mathbb S^1$-Valued Sobolev maps
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 86
EP  - 100
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/
LA  - ru
ID  - CMFD_2010_35_a6
ER  - 
%0 Journal Article
%A P. Mironescu
%T $\mathbb S^1$-Valued Sobolev maps
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 86-100
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/
%G ru
%F CMFD_2010_35_a6
P. Mironescu. $\mathbb S^1$-Valued Sobolev maps. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 86-100. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a6/

[1] Alberti G., Baldo S., Orlandi G., “Functions with prescribed singularities”, J. Eur. Math. Soc., 5:3 (2003), 275–311 | DOI | MR | Zbl

[2] Bethuel F., “A characterization of maps in $H^1(B^3,S^2)$ which can be approximated by smooth maps”, Ann. Inst. Poincaré Anal. Non Linéaire, 7:4 (1990), 269–286 | MR | Zbl

[3] Bethuel F., Chiron D., “Some questions related to the lifting problem in Sobolev spaces”, Contemp. Math., 446 (2007), 125–152 | MR | Zbl

[4] Bethuel F., Orlandi G., Smets D., “Improved estimates for the Ginzburg–Landau equation: the elliptic case”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4:2 (2005), 319–355 | MR | Zbl

[5] Bethuel F., Zheng X., “Density of smooth functions between two manifolds in Sobolev spaces”, J. Funct. Anal., 80 (1988), 60–75 | DOI | MR | Zbl

[6] Bourgain J., Brezis H., “On the equation $\operatorname{div}Y=f$ and application to control of phases”, J. Amer. Math. Soc., 16:2 (2003), 393–426 | DOI | MR | Zbl

[7] Bourgain J., Brezis H., Mironescu P., “Lifting in Sobolev spaces”, J. Anal. Math., 80 (2000), 37–86 | DOI | MR | Zbl

[8] Bourgain J., Brezis H., Mironescu P., “$H^{1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation”, Publ. Math. Inst. Hautes Études Sci., 99 (2004), 1–115 | MR | Zbl

[9] Bourgain J., Brezis H., Mironescu P., “Lifting, degree, and distributional Jacobian revisited”, Comm. Pure Appl. Math., 58:4 (2005), 529–551 | DOI | MR | Zbl

[10] Bousquet P., “Topological singularities in $W^{s,p}(\mathbb S^N,\mathbb S^1)$”, J. Anal. Math., 102 (2007), 311–346 | DOI | MR | Zbl

[11] Bousquet P., Mironescu P. (to appear)

[12] Brezis H., Coron J.-M., Lieb E., “Harmonic maps with defects”, Comm. Math. Phys., 107:4 (1986), 649–705 | DOI | MR | Zbl

[13] Brezis H., Mironescu P., “Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces”, J. Evolution. Equations, 1 (2001), 387–404 | DOI | MR | Zbl

[14] Brezis H., Mironescu P., “Density in $W^{sp}$” (to appear)

[15] Brezis H., Mironescu P., Nguyen H.-M. (to appear)

[16] Brezis H., Mironescu P., Ponce A., “$W^{1,1}$-maps with values into $\mathbb S^1$”, Contemp. Math., 368 (2005), 69–100 | MR | Zbl

[17] Brezis H., Nirenberg L., “Degree theory and BMO. I. Compact manifolds without boundaries”, Selecta Math. (N.S.), 1:2 (1995), 197–263 | DOI | MR | Zbl

[18] Demengel F., “Une caractérisation des applications de $W^{1,p}(B^N,\mathbb S^1)$ qui peuvent être approchées par des fonctions régulières”, C. R. Math. Acad. Sci. Paris, 310:7 (1990), 553–557 | MR | Zbl

[19] Escobedo M., “Some remarks on the density of regular mappings in Sobolev classes of $\mathbb S^M$-valued functions”, Rev. Mat. Comp., 1:1–3 (1988), 127–144 | MR | Zbl

[20] Mironescu P., “Lifting of $\mathbb S^1$-valued maps in sums of Sobolev spaces”, J. Eur. Math. Soc. (to appear)

[21] Muckenhoupt B., Wheeden R., “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[22] Nguyen H.-M., “Inequalities related to liftings and applications”, C. R. Math. Acad. Sci. Paris, 346:17–18 (2008), 957–962 | MR | Zbl

[23] Rivière T., “Dense subsets of $H^{1/2}(\mathbb S^2,\mathbb S^1)$”, Ann. Global Anal. Geom., 18:5 (2000), 517–528 | DOI | MR | Zbl

[24] Schoen R., Uhlenbeck K., “A regularity theory for harmonic maps”, J. Differ. Geom., 17 (1982), 307–335 | MR | Zbl