Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 44-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study functional differential equations with unbounded operator coefficients in Hilbert spaces such that the principal part of the equation is an abstract hyperbolic equation perturbed by terms with delay and terms containing Volterra integral operators. The well-posed solvability of initial boundary-value problems for the specified problems in weighted Sobolev spaces on the positive semi-axis is established. Our concern is spectra of operator-valued functions that are symbols of the specified equations in the autonomous case. In particular, the spectra of the Gurtin–Pipkin equation is studied, which is an integrodifferential equation modelling the heat propagation in media with memory.
@article{CMFD_2010_35_a3,
     author = {V. V. Vlasov and J. Wu and G. R. Kabirova},
     title = {Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {44--59},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a3/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - J. Wu
AU  - G. R. Kabirova
TI  - Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 44
EP  - 59
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a3/
LA  - ru
ID  - CMFD_2010_35_a3
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A J. Wu
%A G. R. Kabirova
%T Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 44-59
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a3/
%G ru
%F CMFD_2010_35_a3
V. V. Vlasov; J. Wu; G. R. Kabirova. Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 44-59. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a3/

[1] Azbelev S. A., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[2] Vlasov V. V., “O razreshimosti i svoistvakh reshenii funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, Mat. sb., 186:8 (1995), 67–92 | MR | Zbl

[3] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Tr. mat. in-ta im. V. A. Steklova, 227, 1999, 109–121 | MR | Zbl

[4] Vlasov V. V., “O korrektnoi razreshimosti abstraktnykh parabolicheskikh uravnenii s posledeistviem”, Dokl. RAN, 415:2 (2007), 151–154 | MR | Zbl

[5] Vlasov V. V., Medvedev D. A., “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Sovremennaya matematika. Fundamentalnye napravleniya, 30, 2008, 3–173 | MR

[6] Vlasov V. V., Shmatov K. I., “Korrektnaya razreshimost uravnenii giperbolicheskogo tipa s zapazdyvaniem v gilbertovom prostranstve”, Tr. mat. in-ta im. V. A. Steklova, 243, 2003, 127–137 | MR | Zbl

[7] Kosmodemyanskii D. A., Shamaev A. S., “O nekotorykh spektralnykh zadachakh v poristykh sredakh, nasyschennykh zhidkostyu”, Sovremennaya matematika. Fundamentalnye napravleniya, 17, 2006, 88–109 | MR

[8] Lions Zh. P., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[9] Miloslavskii A. I., Spektralnye svoistva operatornogo puchka, voznikayuschego v vyazkouprugosti, Dep. v Ukr. NIINTI. No 1229-87, Kharkov, 1987, 53 pp.

[10] Desch W., Miller R. K., “Exponential stabilization of Volterra integrodifferential equations in Hilbert space”, J. Differential Equations, 70 (1987), 366–389 | DOI | MR | Zbl

[11] Di Blasio G., “Parabolic Volterra equations of convolution type”, J. Integral Equations Appl., 6 (1994), 479–508 | DOI | MR | Zbl

[12] Di Blasio G., Kunisch K., Sinestari E., “$L^2$–regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives”, J. Math. Anal. Appl., 102 (1984), 38–57 | DOI | MR | Zbl

[13] Di Blasio G., Kunisch K., Sinestari E., “Stability for abstract linear functional differential equations”, Israel J. Mathematics, 50:3 (1985), 231–263 | DOI | MR | Zbl

[14] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[15] Ivanov S., Pandolfi L., Heat equations with memory: lack of controllability to the rest, Rapporto interno No 35, Politecnico di Torino, 2007

[16] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Operator theory: advances and applications, 146, Nonself-adjoint problems for viscous fluids, Birkhauser Verlag, Basel, 2003 | MR | Zbl

[17] Kunisch K., Mastinsek M., “Dual semigroups and structual operators for partial differential equations with unbounded operators acting on the delays”, Differential Integral Equations, 3:4 (1990), 733–756 | MR | Zbl

[18] Kunisch K., Shappacher W., “Necessary conditions for partial differential equations with delay to generate $C_0$-semigroup”, J. Differ. Equations, 50 (1983), 49–79 | DOI | MR | Zbl

[19] Medvedev D. A., Vlasov V. V., Wu J., “Solvability and structural properties of abstract neutral functional differential equations”, Funct. Differ. Equ., 15:3–4 (2008), 249–272 | MR | Zbl

[20] Miller R. K., “An integrodifferential equation for rigid heat conductors with memory”, J. Math. Anal. Appl., 66 (1978), 313–332 | DOI | MR | Zbl

[21] Miller R. K., Wheeler R. L., “Well-posedness and stability of linear Volterra interodifferential equations in abstract spaces”, Funkcial. Ekvac., 21 (1978), 279–305 | MR | Zbl

[22] Pandolfi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR | Zbl

[23] Vlasov V. V., Wu J., “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equ., 16:1–2 (2009), 751–768 | MR | Zbl

[24] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Differential Integral Equations, 4:6 (1991), 1325–1351 | MR | Zbl

[25] Wu J., Theory and applications of partial functional-differential equations, Springer-Verlag, New York, 1996 | MR