On the Poincar\'e isomorphism in $K$-theory on manifolds with edges
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Poincaré isomorphism in $K$-theory on manifolds with edges is constructed. It is shown that the Poincaré isomorphism can be naturally constructed in terms of noncommutative geometry. More precisely, we obtain a correspondence between a manifold with edges and a noncommutative algebra and establish an isomorphism between the $K$-group of this algebra and the $K$-homology group of the manifold with edges, which is considered as a compact topological space.
@article{CMFD_2009_34_a4,
     author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin},
     title = {On the {Poincar\'e} isomorphism in $K$-theory on manifolds with edges},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a4/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - On the Poincar\'e isomorphism in $K$-theory on manifolds with edges
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 109
EP  - 120
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a4/
LA  - ru
ID  - CMFD_2009_34_a4
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A A. Yu. Savin
%A B. Yu. Sternin
%T On the Poincar\'e isomorphism in $K$-theory on manifolds with edges
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 109-120
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a4/
%G ru
%F CMFD_2009_34_a4
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin. On the Poincar\'e isomorphism in $K$-theory on manifolds with edges. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 109-120. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a4/

[1] Kasparov G., “Operatornaya $K$-teoriya i ee prilozheniya”, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Noveishie rezultaty, 27, VINITI, M., 1985, 3–31 | MR | Zbl

[2] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. mat., 71:6 (2007), 91–118 | MR | Zbl

[3] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3: Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[4] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford Univ. Press, Oxford, 1964, 175–186 | MR

[5] Atiyah M. F., “Global theory of elliptic operators”, Proc. of the Int. Symposium on Functional Analysis, Univ. of Tokyo Press, Tokyo, 1969, 21–30 | MR

[6] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[8] Baum P., Douglas R. G., “$K$-homology and index theory”, Operator Algebras and Applications, Amer. Math. Soc., Providence, 1982, 117–173 | MR

[9] Baum P., Douglas R. G., “Index theory, bordism, and $K$-homology”, Operator Algebras and $K$-Theory (San Francisco, Calif., 1981), Amer. Math. Soc., Providence, 1982, 1–31 | MR

[10] Bismut J.-M., Cheeger J., “$\eta$-invariants and their adiabatic limits”, J. Amer. Math. Soc., 2:1 (1989), 33–70 | DOI | MR | Zbl

[11] Gilkey P. B., Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton, 1995 | MR | Zbl

[12] Higson N., Roe J., Analytic $K$-Homology, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[13] Kaminker J., “Pseudodifferential operators and differentiable structures”, Operator Algebras and $K$-Theory (San Francisco, Calif., 1981), Amer. Math. Soc., Providence, 1982 | MR

[14] Luke G., “Pseudodifferential operators on Hilbert bundles”, J. Differ. Equ., 12 (1972), 566–589 | DOI | MR | Zbl

[15] Melrose R., Piazza P., “Analytic $K$-theory on manifolds with corners”, Adv. Math., 92:1 (1992), 1–26 | DOI | MR | Zbl

[16] Melrose R., Piazza P., “Families of Dirac operators, boundaries and the $b$-calculus”, J. Differential Geom., 46:1 (1997), 99–180 | MR | Zbl

[17] Savin A., Sternin B., “Boundary value problems on manifolds with fibered boundary”, Math. Nachr., 278:11 (2005), 1297–1317 | DOI | MR | Zbl