Deformations of CCR, their $^*$-representations, and enveloping $C^*$-algebras
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 176-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we provide a review of recent results related to the representation theory and properties of enveloping $C^*$-algebras of Wick deformations for canonical commutative and anticommutative relations of quantum mechanics.
@article{CMFD_2008_29_a9,
     author = {D. P. Proskurin and Yu. S. Samoilenko},
     title = {Deformations of {CCR,} their $^*$-representations, and enveloping $C^*$-algebras},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {176--185},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a9/}
}
TY  - JOUR
AU  - D. P. Proskurin
AU  - Yu. S. Samoilenko
TI  - Deformations of CCR, their $^*$-representations, and enveloping $C^*$-algebras
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 176
EP  - 185
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a9/
LA  - ru
ID  - CMFD_2008_29_a9
ER  - 
%0 Journal Article
%A D. P. Proskurin
%A Yu. S. Samoilenko
%T Deformations of CCR, their $^*$-representations, and enveloping $C^*$-algebras
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 176-185
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a9/
%G ru
%F CMFD_2008_29_a9
D. P. Proskurin; Yu. S. Samoilenko. Deformations of CCR, their $^*$-representations, and enveloping $C^*$-algebras. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 176-185. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a9/

[1] Biedenharn L. C., “The quantum group $SU_q(2)$ and $q$-analogue of the boson operators”, J. Phys. A, 22 (1989), 873–878 | DOI | MR

[2] Bożejko M., Speicher R., “An example of a generalized Brownian motion”, Comm. Math. Phys., 137 (1991), 519–531 | DOI | MR

[3] Bożejko M., Speicher R., “Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces”, Math. Ann., 300 (1994), 97–120 | DOI | MR

[4] Bratelli O., Robinson D. W., Operator algebras and quantum statistical mechanics, Springer-Verlag, Berlin–Heidelberg–New York, 1981

[5] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[6] Cuntz J., “$K$-theory and $C^*$-algebras”, Proc. Conf. on $K$-Theory (Bielefeld, 1982), Springer Lecture Notes in Math., 1046, Springer, Berlin, 1984, 55–79 | MR

[7] Dykema K., Nica A., “On the Fock representation of the $q$-commutation relations”, J. Reine Angew. Math., 440 (1993), 201–212 | MR | Zbl

[8] Fivel D. I., “Interpolation between Fermi and Bose statisitics using generalized commutators”, Phys. Rev. Lett., 1990, 3361–3364 | MR | Zbl

[9] Greenberg O. W., “Particles with small violations of Fermi or Bose statistics”, Phys. Rev. D (3), 43 (1991), 4111–4120 | DOI | MR

[10] Iksanov A., Proskurin D., “The interpolation between the classical and monotone independence given by twisted CCR”, Opuscula Math., 23 (2003), 63–69 | MR | Zbl

[11] Jörgensen P. E. T., Proskurin D. P., Samoĭlenko Yu. S., “The kernel of Fock representation of Wick algebras with braided operator of coefficients”, Pacific J. Math., 198 (2001), 109–122 | DOI | MR

[12] Jörgensen P. E. T., Proskurin D. P., Samoilenko Yu. S., “On $C^*$-algebras generated by pairs of $q$-commuting isometries”, J. Phys. A, 38 (2005), 2669–2680 | DOI | MR

[13] Jörgensen P. E. T., Schmitt L. M., Werner R. F., “$q$-Canonical commutation relations and stability of the Cuntz algebra”, Pacific J. Math., 163:1 (1994), 131–151 | MR

[14] Jörgensen P. E. T., Schmitt L. M., Werner R. F., “Positive representations of general commutation relations allowing Wick ordering”, J. Funct. Anal., 134 (1995), 33–99 | DOI | MR | Zbl

[15] Jørgensen P. E. T., Werner R. F., Coherent states of the $q$-canonical commutation relations, arXiv: funct-an/9303002 | MR

[16] Macfarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $SU(2)_q$”, J. Phys. A, 22 (1989), 4581–4588 | DOI | MR | Zbl

[17] Marcinek W., “On commutation relations for quons”, Rep. Math. Phys., 41 (1998), 155–172 | DOI | MR | Zbl

[18] Marcinek W., Ralowski R., “On Wick algebras with braid relations”, J. Math. Phys., 36 (1995), 2803–2820 | DOI | MR

[19] Ostrovskyĭ V., Samoĭlenko Yu., Introduction to the theory of representations of finitely presented $^*$-algebras. I. Representations by bounded operators, The Gordon and Breach Publishing group, London, 1999 | MR

[20] Proskurin D., “Stability of a special class of $q_ij$-CCR and extensions of higher-dimensional noncommutative tori”, Lett. Math. Phys., 52:2 (2000), 165–175 | DOI | MR | Zbl

[21] Proskurin D., Samoĭlenko Yu., “Stability of the $C^*$-algebra associated with the twisted CCR”, Algebras and Rep. Theory, 5 (2002), 433–444 | DOI | MR | Zbl

[22] Proskurin D., Savchuk Yu., Turowska L., “On $C^*$-algebras generated by some deformations of CAR relations”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemporary Math., 391, Amer. Math. Soc., Providence, RI, 2005, 297–313 | MR

[23] Pusz W., Woronowicz S. L., “Twisted second quantization”, Rep. Math. Phys., 27 (1989), 251–263 | MR

[24] Slawny J., “On factor representations and the $C^*$-algebra of canonical commutation relations”, Comm. Math. Phys., 24 (1972), 151–170 | DOI | MR | Zbl

[25] Vaksman L. (ed.), Lectures on $q$-analogues of Cartan domains and associated Harish–Chandra modules, arXiv: math.QA/0109198