Hilbert compacts, compact ellipsoids, and compact extrema
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 165-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of so-called Hilbert compacts $K(H)$ in a Hilbert space $H$; those Hilbert compacts admit a two-sided estimate by compact ellipsoids in $H$. For functionals in $H$, we introduce the notion of a compact extremum achieved at a certain base with respect to the imbedding in $K(H)$. An example of the $K$-extremum of a variational functional in the Sobolev space $W_2^1$ is considered.
@article{CMFD_2008_29_a8,
     author = {I. V. Orlov},
     title = {Hilbert compacts, compact ellipsoids, and compact extrema},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Hilbert compacts, compact ellipsoids, and compact extrema
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 165
EP  - 175
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/
LA  - ru
ID  - CMFD_2008_29_a8
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Hilbert compacts, compact ellipsoids, and compact extrema
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 165-175
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/
%G ru
%F CMFD_2008_29_a8
I. V. Orlov. Hilbert compacts, compact ellipsoids, and compact extrema. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 165-175. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/

[1] Bogdanskii Yu. V., Podkolzin G. B., Chapovskii Yu. A., Funktsionalnyi analiz, Sbornik uprazhnenii, Politekhnika, Kiev, 2005

[2] Bozhonok K. V., Orlov I. V., “Usloviya Lezhandra–Yakobi dlya kompaktnykh ekstremumov integralnykh funktsionalov”, Dokl. NAN Ukr., 2006, no. 11, 11–15 | Zbl

[3] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[4] Zgurovskii M. Z., Melnik V. C., Nelineinyi analiz i upravlenie beskonechnomernymi sistemami, Nauk. dumka, Kiev, 1999

[5] Zorich V. A., Matematicheskii analiz, T. 2, Nauka, M., 1984 | MR | Zbl

[6] Orlov I. V., “$K$–differentsiruemost i $K$–ekstremumy”, Ukr. mat. vestn., 3:1 (2006), 97–115 | MR | Zbl

[7] Orlov I. V., Bozhonok E. V., “Usloviya suschestvovaniya $K$-nepreryvnosti i $K$-differentsiruemosti funktsionala Eilera–Lagranzha v prostranstve Soboleva $W_2^1$”, Uch. zap. TNU, 19(58):2 (2006), 121–136

[8] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[9] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[10] Rudin U., Osnovy matematicheskogo analiza, Mir, M., 1976

[11] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR

[12] Trenogin V. A., Pisarevskii B. M., Soboleva T. S., Zadachi i uprazhneniya po funktsionalnomu analizu, Nauka, M., 1984 | MR | Zbl

[13] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[14] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[15] Berezansky Yu. M., Sheftel Z. G., Us G. F., Functional Analysis, Vol. 1, Birkhäuser Verlag, Basel–Boston–Berlin, 1996 | Zbl

[16] Khruslov E. Ya., Pankratov L. S., “Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces”, Operator Theory and its Applications, Proceedings of the international conference (Winnipeg, Canada, October 7–11, 1998), Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000, 345–366 | MR | Zbl

[17] Kuratowski K., Topology, Vol. 1, Academic Press, New York, 1966 | MR | Zbl

[18] Ricceri B., Integral functionals on Sobolev spaces having multiple local minima, , 2004 arXiv: math.OC/0402445 | MR

[19] Orlov I. V., “Extreme problems and scales of the operator spaces”, North-Holland Math. Stud., 197 (2004), 209–228 | DOI | MR