Hilbert compacts, compact ellipsoids, and compact extrema
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 165-175

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of so-called Hilbert compacts $K(H)$ in a Hilbert space $H$; those Hilbert compacts admit a two-sided estimate by compact ellipsoids in $H$. For functionals in $H$, we introduce the notion of a compact extremum achieved at a certain base with respect to the imbedding in $K(H)$. An example of the $K$-extremum of a variational functional in the Sobolev space $W_2^1$ is considered.
@article{CMFD_2008_29_a8,
     author = {I. V. Orlov},
     title = {Hilbert compacts, compact ellipsoids, and compact extrema},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Hilbert compacts, compact ellipsoids, and compact extrema
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 165
EP  - 175
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/
LA  - ru
ID  - CMFD_2008_29_a8
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Hilbert compacts, compact ellipsoids, and compact extrema
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 165-175
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/
%G ru
%F CMFD_2008_29_a8
I. V. Orlov. Hilbert compacts, compact ellipsoids, and compact extrema. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 165-175. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a8/