Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2008_29_a7, author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin}, title = {Noncommutative geometry and classification of elliptic operators}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {131--164}, publisher = {mathdoc}, volume = {29}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a7/} }
TY - JOUR AU - V. E. Nazaikinskii AU - A. Yu. Savin AU - B. Yu. Sternin TI - Noncommutative geometry and classification of elliptic operators JO - Contemporary Mathematics. Fundamental Directions PY - 2008 SP - 131 EP - 164 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a7/ LA - ru ID - CMFD_2008_29_a7 ER -
%0 Journal Article %A V. E. Nazaikinskii %A A. Yu. Savin %A B. Yu. Sternin %T Noncommutative geometry and classification of elliptic operators %J Contemporary Mathematics. Fundamental Directions %D 2008 %P 131-164 %V 29 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a7/ %G ru %F CMFD_2008_29_a7
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin. Noncommutative geometry and classification of elliptic operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 131-164. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a7/
[1] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. mat. nauk, 19:3 (1964), 53–161 | MR | Zbl
[2] Vasilevskii N. L., “Printsipy lokalnosti v teorii operatorov”, Lineinye operatory v funktsionalnykh prostranstvakh, Tez. dokl. Severo-Kavkazskoi regionalnoi konferentsii, Groznyi, 1989, 32–33
[3] Kasparov G. G., “Topologicheskie invarianty ellipticheskikh operatorov. I. $K$-gomologii”, Izv. AN CCCR. Ser. mat., 39:4 (1975), 796–838 | MR | Zbl
[4] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1967, 209–292
[5] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR
[6] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Ob obschem printsipe lokalizatsii v $C^*$-algebrakh, podgotovleno k pechati
[7] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Psevdodifferentsialnye operatory na stratifitsirovannykh mnogoobraziyakh. I”, Diff. uravn., 43:4 (2007), 519–532 | MR | Zbl
[8] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Dokl. RAN, 408:5 (2006), 591–595 | MR
[9] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Gomotopicheskaya klassifikatsiya ellipticheskikh operatorov na mnogoobraziyakh s uglami, 2007, podgotovleno k pechati
[10] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na mnogoobraziyakh s uglami”, Dokl. RAN, 413:1 (2007), 16–19 | MR | Zbl
[11] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Shultse B.-V., “Ob indekse differentsialnykh operatorov na mnogoobraziyakh s rebrami”, Mat. sb., 196:9 (2005), 23–58 | MR | Zbl
[12] Plamenevskii B. A., Senichkin V. N., “Razreshimye algebry operatorov”, Algebra i analiz, 6:5 (1994), 1–87 | MR | Zbl
[13] Plamenevskii B. A., Senichkin V. N., “O klasse psevdodifferentsialnykh operatorov v $\mathbb R^m$ i na stratifitsirovannykh mnogoobraziyakh”, Mat. sb., 191:5 (2000), 109–142 | MR | Zbl
[14] Plamenevskii B. A., Senichkin V. N., “Predstavleniya $C^*$-algebr psevdodifferentsialnykh operatorov na kusochno-gladkikh mnogoobraziyakh”, Algebra i analiz, 13:6 (2001), 124–174 | MR | Zbl
[15] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii. I”, Izv. AN SSSR. Ser. mat., 29:3 (1965), 567–586 | MR | Zbl
[16] Antonevich A., Lebedev A., Functional differential equations. I. $C^*$-Theory, Longman, Harlow, 1994 | MR | Zbl
[17] Antonevich A., Belousov M., Lebedev A., Functional differential equations. II. $C^*$-Applications, Parts 1, 2, Longman, Harlow, 1998 | MR | Zbl
[18] Arveson W., An invitation to $C^*$-algebras, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | Zbl
[19] Atiyah M. F., “Global theory of elliptic operators”, Proc. of the Int. Symposium on Functional Analysis, University of Tokyo Press, Tokyo, 1969, 21–30 | MR
[20] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Differential Analysis, Bombay Colloq., 1964, Oxford University Press, London, 1964, 175–186 | MR
[21] Atiyah M. F., Singer I. M., “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl
[22] Baum P., Douglas R. G., “$K$-homology and index theory”, Oper. Alg. Appl., Amer. Math. Soc., Providence, 1982, 117–173 | MR
[23] Brown L., Douglas R., Fillmore P., “Extensions of $C^*$-algebras and $K$-homology”, Ann. Math. (2), 105 (1977), 265–324 | DOI | MR | Zbl
[24] Blackadar B., $K$-Theory for operator algebras, Cambridge University Press, Cambridge, 1998, 300 pp. | MR | Zbl
[25] Dauns J., Hofmann K. H., Representation of rings by sections, Amer. Math. Soc., Providence, 1968 | MR
[26] Dixmier J., Les $C^*$-algebres et leurs representations, Gauthier-Villars, Paris, 1969 | MR | Zbl
[27] Egorov Yu., Schulze B.-W., Pseudo-differential operators, singularities, applications, Birkhäuser, Boston–Basel–Berlin, 1997 | MR | Zbl
[28] Gohberg I., Krupnik N., One-dimensional linear singular integral equations, Vol. I, II, Birkhäuser, Basel, 1992
[29] Haskell P., “Index theory of geometric Fredholm operators on varieties with isolated singularities”, $K$-Theory, 1:5 (1987), 457–466 | DOI | MR | Zbl
[30] Higson N., Roe J., Analytic $K$-homology, Oxford University Press, Oxford, 2000 | MR | Zbl
[31] Kasparov G., “Equivariant $KK$-theory and the Novikov conjecture”, Inv. Math., 91:1 (1988), 147–201 | DOI | MR | Zbl
[32] Lauter R., Moroianu S., “The index of cusp operators on manifolds with corners”, Ann. Global Anal. Geom., 21:1 (2002), 31–49 | DOI | MR | Zbl
[33] Le Gall P.-Y., Monthubert B., “$K$-theory of the indicial algebra of a manifold with corners”, $K$-Theory, 23:2 (2001), 105–113 | DOI | MR | Zbl
[34] Mazzeo R., “Elliptic theory of differential edge operators. I”, Comm. Partial Differential Equations, 16(10) (1991), 1615–1664 | DOI | MR | Zbl
[35] Melo S. T., Nest R., Schrohe E., “$C^*$-structure and $K$-theory of Boutet de Monvel's algebra”, J. Reine Angew. Math., 561 (2003), 145–175 | DOI | MR | Zbl
[36] Melrose R., “Transformation of boundary problems”, Acta Math., 147 (1981), 149–236 | DOI | MR | Zbl
[37] Melrose R., Analysis on manifolds with corners. Lecture Notes, Preprint, MIT, Cambrige, 1988 | MR
[38] Melrose R., “Pseudodifferential operators, corners, and singular limits”, Proceedings of the International Congress of Mathematicians, Kyoto, Springer, Berlin–Heidelberg–New York, 1990, 217–234 | MR
[39] Melrose R., Mendoza G. A., “Elliptic boundary problems on spaces with conical points” (St.-Jean-de-Monts, 1981), Journées Équ. Dériv. Part., no. 4, 1981, 21 pp.
[40] Melrose R., Nistor V., “$K$-theory of $C^*$-algebras of $b$-pseudodifferential operators”, Geom. Funct. Anal., 8:1 (1998), 88–122 | DOI | MR | Zbl
[41] Melrose R., Piazza P., “Analytic $K$-theory on manifolds with corners”, Adv. Math., 92:1 (1992), 1–26 | DOI | MR | Zbl
[42] Melrose R., Rochon F., Index in $K$-theory for families of fibred cusp operators, , 2005 arXiv: math.DG/0507590 | MR
[43] Monthubert B., “Pseudodifferential calculus on manifolds with corners and groupoids”, Proc. Amer. Math. Soc., 127:10 (1999), 2871–2881 | DOI | MR | Zbl
[44] Monthubert B., “Groupoids of manifolds with corners and index theory”, Groupoids in Analysis, Geometry, and Physics, Amer. Math. Soc., Providence, 2001, 147–157 | MR | Zbl
[45] Monthubert B., “Groupoids and pseudodifferential calculus on manifolds with corners”, J. Funct. Anal., 199:1 (2003), 243–286 | DOI | MR | Zbl
[46] Monthubert B., Nistor V., A topological index theorem for manifolds with corners, , 2005 arXiv: math.KT/0507601 | MR
[47] Nazaikinskii V., Rozenblioum G., Savin A., Sternin B., “Guillemin transform and Toeplitz Representations for operators on singular manifolds”, Spectral Geometry of Manifolds with Boundary, Amer. Math. Soc., Providence, 2005, 281–306 | MR | Zbl
[48] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on singular manifolds, CRC-Press, Boca Raton, 2005 | MR
[49] Nazaikinskii V., Savin A., Sternin B., Elliptic theory on manifolds with corners. I. Dual manifolds and pseudodifferential operators, , 2006 arXiv: math.OA/0608353
[50] Nazaikinskii V., Savin A., Sternin B., Elliptic theory on manifolds with corners. II. Homotopy classification of elliptic operators, , 2006 arXiv: math.OA/0608354
[51] Nazaikinskii V., Savin A., Sternin B., On the homotopy classification of elliptic operators on stratified manifolds, , 2006 arXiv: math.KT/0608332 | MR
[52] Paschke W. L., “$K$-theory for commutants in the Calkin algebra”, Pacific J. Math., 95:2 (1981), 427–434 | MR | Zbl
[53] Pedersen G. K., $C^*$-Algebras and Their Automorphism Groups, Academic Press, London–New York, 1979 | MR | Zbl
[54] Savin A., “Elliptic operators on singular manifolds and $K$-homology”, $K$-Theory, 34:1 (2005), 71–98 | DOI | MR | Zbl
[55] Schulze B.-W., Pseudodifferential operators on manifolds with singularities, North-Holland, Amsterdam, 1991 | MR | Zbl
[56] Schulze B.-W., Sternin B., Shatalov V., “Structure rings of singularities and differential equations”, Differential Equations, Asymptotic Analysis, and Mathematical Physics, Akademie Verlag, Berlin, 1996, 325–347 | MR
[57] Schulze B.-W., Sternin B., Shatalov V., Differential Equations on Singular manifolds. Semiclassical theory and operator algebras, Wiley-VCH Verlag, Berlin–New York, 1998 | MR
[58] Vasilevski N., “Convolution operators on standard CR-manifolds. II. Algebras of convolution operators on the Heisenberg group”, Integr. Equat. Oper. Theory, 19:3 (1994), 327–348 | DOI | MR | Zbl