Problem on small motions and normal oscillations of capillary viscous liquids in rotating vessels
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 71-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new recent results of the author are applied to study the problem. We begin from the problem posing. Then we consider the problem as a system of operator equations in a Hilbert space. Further, the initial-boundary value problem is reduced to the Cauchy problem for the abstract parabolic equation; this allows us to prove the unique solvability theorem. Then we study normal oscillations of the hydraulic system under the assumption of static stability with respect to the linear approximation. We prove results about the spectrum of the problem and prove that the system of root functions (eigenfunctions and associated functions) form a basis. Also, we prove that if the static stability assumption is not satisfied, then the inversion of Lagrange's theorem on the stability is valid.
@article{CMFD_2008_29_a5,
     author = {N. D. Kopachevskii},
     title = {Problem on small motions and normal oscillations of capillary viscous liquids in rotating vessels},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {71--102},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a5/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
TI  - Problem on small motions and normal oscillations of capillary viscous liquids in rotating vessels
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 71
EP  - 102
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a5/
LA  - ru
ID  - CMFD_2008_29_a5
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%T Problem on small motions and normal oscillations of capillary viscous liquids in rotating vessels
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 71-102
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a5/
%G ru
%F CMFD_2008_29_a5
N. D. Kopachevskii. Problem on small motions and normal oscillations of capillary viscous liquids in rotating vessels. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 71-102. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a5/

[1] Babskii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., Tyuptsov A. D., Gidromekhanika nevesomosti, pod obsch. red. A. D. Myshkisa, Nauka, M., 1976

[2] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[3] Volodkovich E. D., Kopachevskii M. D., “Zvernennya teoremy Lagranzha pro stiikist malikh rukhiv kapilyarnoi v'yazkoi obertayuschiïsya ridini”, Spektralnye i evolyutsionnye zadachi, Tez. dokl. II Krymskoi osennei matematicheskoi shkoly-simpoziuma (KROMSh – II), 2, Simferopol–Laspi, 1993, 73–74

[4] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[6] Dudik O. A., “Malye dvizheniya i normalnye kolebaniya kapillyarnoi vyazkoi zhidkosti v nepodvizhnom sosude”, Tavricheskaya nauchn. konf. studentov i molodykh spetsialistov po informatike i matematike, Izd-vo Krymskogo nauchn. tsentra NANU, Simferopol, 2004, 20–23

[7] Kopachevskii N. D., “Obraschenie teoremy Lagranzha ob ustoichivosti malykh kolebanii kapillyarnoi zhidkosti”, Tez. dokl. Vses. konf. “Problemy kompleksnoi avtomatizatsii gidrofizicheskikh issledovanii” (Sevastopol, MGI AN USSR, OKB “Inform” pri Simferop. gos. un-te, 11–13 maya 1989 g.), Sevastopol, 1989, 99–100

[8] Kopachevskii N. D., “Obraschenie teoremy Lagranzha ob ustoichivosti malykh kolebanii kapillyarnoi vyazkoi zhidkosti”, Dokl. AN SSSR, 314:1 (1990), 71–73 | MR

[9] Kopachevskii N. D., “Ob ustoichivosti malykh dvizhenii kapillyarnoi vyazkoi vraschayuscheisya zhidkosti”, Tez. dokl. mezhdunar. mat. konf. “Lyapunovskie chteniya”, posvyasch. 100-letiyu sozdaniya A. M. Lyapunovym teor. ust. dvizh., Kharkov, 1992, 77–78 | MR

[10] Kopachevskii N. D., “Abstraktnaya formula Grina i zadachi Stoksa”, Matematika i mekhanika sploshnoi sredy, Izv. vuzov Sev.-Kavk. reg. Estestv. nauki, Rostov-na-Donu, 2004, 137–141

[11] Kopachevskii N. D., “Ob abstraktnoi formule Grina dlya troiki gilbertovykh prostranstv i ee prilozheniyakh k zadache Stoksa”, Tavricheskii vestnik informatiki i matematiki (TVIM), 2004, no. 2, 52–80

[12] Kopachevskii N. D., Krein S. G., “Abstraktnaya formula Grina dlya troiki gilbertovykh prostranstv, abstraktnye kraevye i spektralnye zadachi”, Ukr. mat. vestnik, 1:1 (2004), 69–97 | MR | Zbl

[13] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR

[14] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[15] Myshkis A. D., Babskii V. G., Zhukov M. Yu., Kopachevskii N. D., Slobozhanin L. A., Tyuptsov A. D., Metody resheniya zadach gidromekhaniki dlya uslovii nevesomosti, pod red. A. D. Myshkisa, Naukova dumka, Kiev, 1992 | Zbl

[16] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[17] Suslina T. A., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskogo uravneniya v oblasti s kusochno-gladkoi granitsei”, Zap. nauch. sem. LOMI, 147, 1985, 179–183 ; деп. в ВИНИТИ 21.11.85, No 8058-В | MR | Zbl

[18] Suslina T. A., Asimptotika spektra nekotorykh zadach, svyazannykh s kolebaniyami zhidkostei, dep. v VINITI 21.11.85, No 8058-V, Leningr. elektrotekhn. in-t svyazi, L., 1985

[19] Suslina T. A., “Spektralnaya asimptotika dvukh modelnykh zadach o kolebaniyakh zhidkosti”, Izv. Sankt-Peterburg. elektrotekhnich. in-ta, 449 (1992), 82–88

[20] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generaized method of eigenoscillations in diffraction theory, WILEY-VCH Verlag, Berlin–New York, 1999 | MR | Zbl

[21] Gagliargo E., “Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR

[22] Iohvidov I. S., Krein M. G., Langer H., Introduction to the spectral theory of operators in spaces wiht an indefinite metric, Akademie-Verlag, Berlin, 1982 | MR | Zbl

[23] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics. Vol. 1: Self-adjoint problems for an ideal fluid, Operator Theory Adv. and Appl., 128, Birkhäuser Verlag, Basel–Boston–Berlin, 2001 | MR | Zbl

[24] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics. Vol. 2: Nonself-adjoint problems for viscous fluids, Operator Theory Adv. and Appl., 146, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl

[25] Metivier G., “Valeurs propres d'operateurs definis par le restriction de systemes variationales a des sousespaces”, J. Math. Pures Appl. (9), 57:2 (1978), 133–156 | MR | Zbl

[26] Myshkis A. D., Babskii V. G., Kopachevskii N. D., Slobozhanin L. A., Tyuptsov A. D., Low-gravity fluid mechanics. Mathematical theory and capillary phenomena, Springer-Verlag, Berlin, 1987 | MR | Zbl

[27] Solonnikov V. A., “On the stability of nonsymmetric equilibrium figures of a rotating viscous incompressible liquid”, Interfaces Free Bound., 6:4 (2004), 461–492 | DOI | MR | Zbl

[28] Solonnikov V. A., “On linear stability and instability of equilibrium figures of uniformly rotating liquid”, Proc. Conf. on Elliptic and Parabolic Problems (Taiwan, 2004) (to appear) | MR