Problem on small motions of ideal rotating relaxing fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an evolution problem on small motions of the ideal rotating relaxing fluid in bounded domains. We begin from the problem posing. Then we reduce the problem to a second-order integrodifferential equation in a Hilbert space. Using this equation, we prove a strong unique solvability problem for the corresponding initial-boundary value problem.
@article{CMFD_2008_29_a4,
     author = {D. A. Zakora},
     title = {Problem on small motions of ideal rotating relaxing fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Problem on small motions of ideal rotating relaxing fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 62
EP  - 70
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
LA  - ru
ID  - CMFD_2008_29_a4
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Problem on small motions of ideal rotating relaxing fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 62-70
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
%G ru
%F CMFD_2008_29_a4
D. A. Zakora. Problem on small motions of ideal rotating relaxing fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/