Problem on small motions of ideal rotating relaxing fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an evolution problem on small motions of the ideal rotating relaxing fluid in bounded domains. We begin from the problem posing. Then we reduce the problem to a second-order integrodifferential equation in a Hilbert space. Using this equation, we prove a strong unique solvability problem for the corresponding initial-boundary value problem.
@article{CMFD_2008_29_a4,
     author = {D. A. Zakora},
     title = {Problem on small motions of ideal rotating relaxing fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--70},
     year = {2008},
     volume = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Problem on small motions of ideal rotating relaxing fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 62
EP  - 70
VL  - 29
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
LA  - ru
ID  - CMFD_2008_29_a4
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Problem on small motions of ideal rotating relaxing fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 62-70
%V 29
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
%G ru
%F CMFD_2008_29_a4
D. A. Zakora. Problem on small motions of ideal rotating relaxing fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/

[1] Zakora D. A., “Zadacha o malykh dvizheniyakh idealnoi relaksiruyuschei zhidkosti”, Dinamicheskie sistemy, 20, 2006, 104–112 | Zbl

[2] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR

[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[4] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[5] Bolgova (Orlova) L. D., Kopachevsky N. D., “Boundary value problems on small oscillations of an ideal relaxing fluid and its generalizations”, Spektralnye i evolyutsionnye zadachi, Tez. lekts. i dokl. III Krymskoi osennei matematicheskoi shkoly-simpoziuma (KROMSh – III), 3, Simferopol, 1994, 41–42

[6] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics. Vol. 2. Nonself-adjoint problems for viscous fluids, Operator Theory Adv. and Appl., 146, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl

[7] Ralston J. V., “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl., 44 (1973), 366–383 | DOI | MR | Zbl