Problem on small motions of ideal rotating relaxing fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an evolution problem on small motions of the ideal rotating relaxing fluid in bounded domains. We begin from the problem posing. Then we reduce the problem to a second-order integrodifferential equation in a Hilbert space. Using this equation, we prove a strong unique solvability problem for the corresponding initial-boundary value problem.
@article{CMFD_2008_29_a4,
     author = {D. A. Zakora},
     title = {Problem on small motions of ideal rotating relaxing fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Problem on small motions of ideal rotating relaxing fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 62
EP  - 70
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
LA  - ru
ID  - CMFD_2008_29_a4
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Problem on small motions of ideal rotating relaxing fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 62-70
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
%G ru
%F CMFD_2008_29_a4
D. A. Zakora. Problem on small motions of ideal rotating relaxing fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/

[1] Zakora D. A., “Zadacha o malykh dvizheniyakh idealnoi relaksiruyuschei zhidkosti”, Dinamicheskie sistemy, 20, 2006, 104–112 | Zbl

[2] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR

[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[4] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[5] Bolgova (Orlova) L. D., Kopachevsky N. D., “Boundary value problems on small oscillations of an ideal relaxing fluid and its generalizations”, Spektralnye i evolyutsionnye zadachi, Tez. lekts. i dokl. III Krymskoi osennei matematicheskoi shkoly-simpoziuma (KROMSh – III), 3, Simferopol, 1994, 41–42

[6] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics. Vol. 2. Nonself-adjoint problems for viscous fluids, Operator Theory Adv. and Appl., 146, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl

[7] Ralston J. V., “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl., 44 (1973), 366–383 | DOI | MR | Zbl