Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2008_29_a4, author = {D. A. Zakora}, title = {Problem on small motions of ideal rotating relaxing fluid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {62--70}, publisher = {mathdoc}, volume = {29}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/} }
D. A. Zakora. Problem on small motions of ideal rotating relaxing fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 62-70. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a4/
[1] Zakora D. A., “Zadacha o malykh dvizheniyakh idealnoi relaksiruyuschei zhidkosti”, Dinamicheskie sistemy, 20, 2006, 104–112 | Zbl
[2] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR
[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[4] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl
[5] Bolgova (Orlova) L. D., Kopachevsky N. D., “Boundary value problems on small oscillations of an ideal relaxing fluid and its generalizations”, Spektralnye i evolyutsionnye zadachi, Tez. lekts. i dokl. III Krymskoi osennei matematicheskoi shkoly-simpoziuma (KROMSh – III), 3, Simferopol, 1994, 41–42
[6] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics. Vol. 2. Nonself-adjoint problems for viscous fluids, Operator Theory Adv. and Appl., 146, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl
[7] Ralston J. V., “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl., 44 (1973), 366–383 | DOI | MR | Zbl