Inverse problems for evolution equations with fractional integrals at boundary-value conditions
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 49-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is considered: to find a solution and a term of a first-order differential equation in a Banach space if the initial-value condition and an excessive condition containing the fractional Riemann–Liouville integral are given. We show that the solvability of the considered problem depends on the distributions of zeroes of the Mittag-Leffler function.
@article{CMFD_2008_29_a3,
     author = {A. V. Glushak},
     title = {Inverse problems for evolution equations with fractional integrals at boundary-value conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a3/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - Inverse problems for evolution equations with fractional integrals at boundary-value conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 49
EP  - 61
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a3/
LA  - ru
ID  - CMFD_2008_29_a3
ER  - 
%0 Journal Article
%A A. V. Glushak
%T Inverse problems for evolution equations with fractional integrals at boundary-value conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 49-61
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a3/
%G ru
%F CMFD_2008_29_a3
A. V. Glushak. Inverse problems for evolution equations with fractional integrals at boundary-value conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 49-61. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a3/

[1] Glushak A. V., “O svyazi prointegrirovannoi kosinus-operator-funktsii s operatornoi funktsiei Besselya”, Diff. uravn., 42:5 (2006), 583–589 | MR | Zbl

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Mir, M., 1962

[3] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | Zbl

[4] Melnikova I. V., Filinkov A. I., “Integrirovannye polugruppy i $C$-polugruppy. Korrektnost i regulyarizatsiya differentsialno-operatornykh zadach”, Usp. mat. nauk, 49:6(300) (1994), 111–150 | MR | Zbl

[5] Sedletskii A. M., “O nulyakh funktsii tipa Mittag-Lefflera”, Mat. zametki, 68:5 (2000), 710–724 | MR | Zbl

[6] Tikhonov I. V, Eidelman Yu. S., “Obratnaya zadacha dlya differentsialnogo uravneniya v banakhovom prostranstve i raspredelenie nulei tseloi funktsii Mittag-Lefflera”, Diff. uravn., 38:5 (2002), 637–644 | MR | Zbl

[7] Tikhonov I. V, Eidelman Yu. S., “Kriterii edinstvennosti v obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya s nestatsionarnym neodnorodnym slagaemym”, Mat. zametki, 77:2 (2005), 273–290 | MR | Zbl

[8] Khille E., Fillips Z. S., Funktsionalnyi analiz i polugruppy, Mir, M., 1962

[9] Eidelman Yu. S., “Odna obratnaya zadacha dlya evolyutsionnogo uravneniya”, Dokl. AN USSR. Ser. A, 1983, no. 4, 15–18 | MR

[10] Eidelman Yu. S., “Odna obratnaya zadacha dlya evolyutsionnogo uravneniya”, Mat. zametki, 49:5 (1991), 135–141 | MR | Zbl

[11] Arendt W., “Vector valued Laplace transforms and Cauchy problems”, Israel J. Math., 59 (1987), 327–352 | DOI | MR | Zbl

[12] Mijatović M., Pilipović S., Vejzović F., “$\alpha$-Times integrated semigroups $(\alpha\in\mathbb R^+)$”, J. Math. Anal. Appl., 210 (1997), 790–803 | DOI | MR | Zbl

[13] Neubrander F., “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacific. J. Math., 135 (1988), 111–155 | MR | Zbl

[14] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983 | MR | Zbl

[15] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl