Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2008_29_a2, author = {A. B. Antonevich and Yu. Yakubovska}, title = {Weighted translation operators generated by mappings with saddle points: a model class}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {29--48}, publisher = {mathdoc}, volume = {29}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/} }
TY - JOUR AU - A. B. Antonevich AU - Yu. Yakubovska TI - Weighted translation operators generated by mappings with saddle points: a model class JO - Contemporary Mathematics. Fundamental Directions PY - 2008 SP - 29 EP - 48 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/ LA - ru ID - CMFD_2008_29_a2 ER -
%0 Journal Article %A A. B. Antonevich %A Yu. Yakubovska %T Weighted translation operators generated by mappings with saddle points: a model class %J Contemporary Mathematics. Fundamental Directions %D 2008 %P 29-48 %V 29 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/ %G ru %F CMFD_2008_29_a2
A. B. Antonevich; Yu. Yakubovska. Weighted translation operators generated by mappings with saddle points: a model class. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 29-48. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/
[1] Antonevich A. B., Lineinye funktsionalnye uravneniya: operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl
[2] Antonevich A. B., “Kogerentnaya lokalnaya giperbolichnost lineinogo rasshireniya i suschestvennye spektry operatora vzveshennogo sdviga na otrezke”, Funkts. analiz i ego pril., 39:1 (2005), 11–26 | MR | Zbl
[3] Antonevich A. B., Yakubovska Yu., “Vliyanie sedlovykh tochek na tonkie spektralnye svoistva operatorov vzveshennogo sdviga”, Vestn. BelGU. Ser. 1, 2006, no. 3, 86–93 | MR | Zbl
[4] Karlovich Yu. I., Mardiev R., “Odnostoronnyaya obratimost funktsionalnykh operatorov s nekarlemanovskim sdvigom v prostranstvakh Geldera”, Izv. vuzov. Ser. mat., 1987, no. 3, 77–80 | MR | Zbl
[5] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, Usp. mat. nauk, 46:3(278) (1991), 85–143 | MR | Zbl
[6] Mardiev R., “Kriterii poluneterovosti dlya odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 1985, no. 2, 5–7 | MR | Zbl
[7] Marton M. V., “Suschestvennye spektry Fredgolma, Veilya i Braudera operatorov vzveshennogo sdviga”, Vestn. BelGU. Ser. 1, 2003, no. 1, 61–66 | MR
[8] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[9] Antonevich A., Lebedev A., Functional differential equations: I. $C^*$-theory, Longman, Harlow, 1994 | Zbl
[10] Chicone C., Latushkin Yu., Evolution semigroup in dynamical systems and differential equations, AMS, Providence, 1999 | MR | Zbl
[11] Kravchenko V. G., Litvinchuk G. S., Introduction to the theory of singular integral operators with shift, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl