Weighted translation operators generated by mappings with saddle points: a model class
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 29-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A particular class of weighted translation operators $B$ generated by mappings with saddle points are considered. For $\lambda$ belonging to the spectrum of the operator $B$, a description of properties of the operator $B-\lambda I$ is found. In particular, necessary and sufficient conditions of one-side invertibility are found. It follows from the obtained results that weighted translation operators generated by mappings with saddle points have principally different spectral properties compared to weighted translation operators generated by mappings without saddle points (investigated earlier). It is proved that the operator $B-I$ is one-side invertible if and only if a certain property of a linear extension associated with the operator $B$ holds.
@article{CMFD_2008_29_a2,
     author = {A. B. Antonevich and Yu. Yakubovska},
     title = {Weighted translation operators generated by mappings with saddle points: a model class},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {29--48},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - Yu. Yakubovska
TI  - Weighted translation operators generated by mappings with saddle points: a model class
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 29
EP  - 48
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/
LA  - ru
ID  - CMFD_2008_29_a2
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A Yu. Yakubovska
%T Weighted translation operators generated by mappings with saddle points: a model class
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 29-48
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/
%G ru
%F CMFD_2008_29_a2
A. B. Antonevich; Yu. Yakubovska. Weighted translation operators generated by mappings with saddle points: a model class. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 29-48. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a2/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya: operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] Antonevich A. B., “Kogerentnaya lokalnaya giperbolichnost lineinogo rasshireniya i suschestvennye spektry operatora vzveshennogo sdviga na otrezke”, Funkts. analiz i ego pril., 39:1 (2005), 11–26 | MR | Zbl

[3] Antonevich A. B., Yakubovska Yu., “Vliyanie sedlovykh tochek na tonkie spektralnye svoistva operatorov vzveshennogo sdviga”, Vestn. BelGU. Ser. 1, 2006, no. 3, 86–93 | MR | Zbl

[4] Karlovich Yu. I., Mardiev R., “Odnostoronnyaya obratimost funktsionalnykh operatorov s nekarlemanovskim sdvigom v prostranstvakh Geldera”, Izv. vuzov. Ser. mat., 1987, no. 3, 77–80 | MR | Zbl

[5] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, Usp. mat. nauk, 46:3(278) (1991), 85–143 | MR | Zbl

[6] Mardiev R., “Kriterii poluneterovosti dlya odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 1985, no. 2, 5–7 | MR | Zbl

[7] Marton M. V., “Suschestvennye spektry Fredgolma, Veilya i Braudera operatorov vzveshennogo sdviga”, Vestn. BelGU. Ser. 1, 2003, no. 1, 61–66 | MR

[8] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[9] Antonevich A., Lebedev A., Functional differential equations: I. $C^*$-theory, Longman, Harlow, 1994 | Zbl

[10] Chicone C., Latushkin Yu., Evolution semigroup in dynamical systems and differential equations, AMS, Providence, 1999 | MR | Zbl

[11] Kravchenko V. G., Litvinchuk G. S., Introduction to the theory of singular integral operators with shift, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl