On linear problems with surface dissipation of energy
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 11-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of this work is devoted to applications of functional analysis methods to a linear initial-boundary value problem of mathematical physics with a surface dissipation of the energy. Its abstract analog is studied as well. The abstract Green formula for a triple of Hilbert spaces is used. In the second part, spectral problems generated by linear initial-boundary value problems with a surface dissipation of the energy are studied. First we formulate the spectral problem of mathematical physics and the corresponding abstract problem. Further, we consider basic properties of the spectrum and show that it is rather specific in the case of considered problems; particular examples (one-dimensional and two-dimensional ones as well as an example of a cylindrical domain) are used for that. It turns out that the spectrum migrates in the complex plane, while the dissipation parameter changes from zero to infinity. Examples of numerical computations of the spectrum by means of the iteration method are provided. Further, we investigate the general setting of the spectral problem. Using a general result of Azizov, we prove that the spectrum of the generic problem is discrete and has a limiting point at infinity.
@article{CMFD_2008_29_a1,
     author = {O. A. Andronova and N. D. Kopachevskii},
     title = {On linear problems with surface dissipation of energy},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {11--28},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/}
}
TY  - JOUR
AU  - O. A. Andronova
AU  - N. D. Kopachevskii
TI  - On linear problems with surface dissipation of energy
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 11
EP  - 28
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/
LA  - ru
ID  - CMFD_2008_29_a1
ER  - 
%0 Journal Article
%A O. A. Andronova
%A N. D. Kopachevskii
%T On linear problems with surface dissipation of energy
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 11-28
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/
%G ru
%F CMFD_2008_29_a1
O. A. Andronova; N. D. Kopachevskii. On linear problems with surface dissipation of energy. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 11-28. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/

[1] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk, 57:5(347) (2002), 3–78 | MR | Zbl

[2] Vulis I. L., Solomyak M. Z., “Spektralnaya asimptotika vyrozhdayuscheisya zadachi Steklova”, Vestnik LGU, 1973, no. 19, 148–150 | MR | Zbl

[3] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR

[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, M., Nauka

[5] Karazeeva N. A., Solomyak M. Z., “Asimptotika spektra zadachi tipa Steklova v sostavnykh oblastyakh”, Probl. mat. analiza, 1981, no. 8, 36–48 | MR | Zbl

[6] Kopachevskii N. D., “Abstraktnaya formula Grina dlya troiki gilbertovykh prostranstv i ee prilozheniya k zadache Stoksa”, Tavricheskii vestnik informatiki i matematiki (TVIM), 2004, no. 2, 52–80

[7] Kopachevskii N. D., “Abstraktnaya formula Grina i zadacha Stoksa”, Matematika i mekhanika sploshnoi sredy, Izv. vuzov Sev.-Kavk. reg. Estestv. nauki, Rostov-na-Donu, 2004, 137–141

[8] Kopachevskii N. D., Krein S. G., “Abstraktnaya formula Grina dlya troiki gilbertovykh prostranstv, abstraktnye kraevye i spektralnye zadachi”, Ukr. mat. vestn., 1:1 (2004), 69–97 | MR | Zbl

[9] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR

[10] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[11] Oben Zh.-P., Priblizhennye resheniya ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[12] Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 2006 ; http://www.emis.de/ monographs/Chueshov | MR

[13] Chueshov I., Eller M., Lasiecka I., “Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Comm. Partial Differential Equations, 29:11–12 (2004), 1847–1876 | MR | Zbl

[14] Chueshov I., Lasiecka I., “Global attractors for von Karman evolutions with a nonliner boundary dissipations”, J. Differential Equations, 198 (2004), 196–231 | DOI | MR | Zbl