Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2008_29_a1, author = {O. A. Andronova and N. D. Kopachevskii}, title = {On linear problems with surface dissipation of energy}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {11--28}, publisher = {mathdoc}, volume = {29}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/} }
TY - JOUR AU - O. A. Andronova AU - N. D. Kopachevskii TI - On linear problems with surface dissipation of energy JO - Contemporary Mathematics. Fundamental Directions PY - 2008 SP - 11 EP - 28 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/ LA - ru ID - CMFD_2008_29_a1 ER -
O. A. Andronova; N. D. Kopachevskii. On linear problems with surface dissipation of energy. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 11-28. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a1/
[1] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk, 57:5(347) (2002), 3–78 | MR | Zbl
[2] Vulis I. L., Solomyak M. Z., “Spektralnaya asimptotika vyrozhdayuscheisya zadachi Steklova”, Vestnik LGU, 1973, no. 19, 148–150 | MR | Zbl
[3] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR
[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, M., Nauka
[5] Karazeeva N. A., Solomyak M. Z., “Asimptotika spektra zadachi tipa Steklova v sostavnykh oblastyakh”, Probl. mat. analiza, 1981, no. 8, 36–48 | MR | Zbl
[6] Kopachevskii N. D., “Abstraktnaya formula Grina dlya troiki gilbertovykh prostranstv i ee prilozheniya k zadache Stoksa”, Tavricheskii vestnik informatiki i matematiki (TVIM), 2004, no. 2, 52–80
[7] Kopachevskii N. D., “Abstraktnaya formula Grina i zadacha Stoksa”, Matematika i mekhanika sploshnoi sredy, Izv. vuzov Sev.-Kavk. reg. Estestv. nauki, Rostov-na-Donu, 2004, 137–141
[8] Kopachevskii N. D., Krein S. G., “Abstraktnaya formula Grina dlya troiki gilbertovykh prostranstv, abstraktnye kraevye i spektralnye zadachi”, Ukr. mat. vestn., 1:1 (2004), 69–97 | MR | Zbl
[9] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: evolyutsionnye i spektralnye zadachi, Nauka, M., 1989 | MR
[10] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[11] Oben Zh.-P., Priblizhennye resheniya ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR
[12] Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 2006 ; http://www.emis.de/ monographs/Chueshov | MR
[13] Chueshov I., Eller M., Lasiecka I., “Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Comm. Partial Differential Equations, 29:11–12 (2004), 1847–1876 | MR | Zbl
[14] Chueshov I., Lasiecka I., “Global attractors for von Karman evolutions with a nonliner boundary dissipations”, J. Differential Equations, 198 (2004), 196–231 | DOI | MR | Zbl