Dynamics of ideal liquid with free surface in conformal variables
Contemporary Mathematics. Fundamental Directions, Hydrodynamics, Tome 28 (2008), pp. 3-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of the mathematical hydrodynamics with free surface in conformal variables are studied. Analytical solvability in Hilbert space scale and numerical techniques of finding approximate solutions are considered. Lifetime for solutions, a constructive evaluation, and an application of mathematical statistics to the solvability of nonlinear equations are studied. Multiple numerical experiments of the methods considered are shown. A lot of these methods can be applied not only to problems of the mathematical hydrodynamics with a free surface, but to abstract Cauchy–Kovalevskaya problems in Banach spaces scales as well.
@article{CMFD_2008_28_a0,
     author = {R. V. Shamin},
     title = {Dynamics of ideal liquid with free surface in conformal variables},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {3--144},
     publisher = {mathdoc},
     volume = {28},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_28_a0/}
}
TY  - JOUR
AU  - R. V. Shamin
TI  - Dynamics of ideal liquid with free surface in conformal variables
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 3
EP  - 144
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_28_a0/
LA  - ru
ID  - CMFD_2008_28_a0
ER  - 
%0 Journal Article
%A R. V. Shamin
%T Dynamics of ideal liquid with free surface in conformal variables
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 3-144
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_28_a0/
%G ru
%F CMFD_2008_28_a0
R. V. Shamin. Dynamics of ideal liquid with free surface in conformal variables. Contemporary Mathematics. Fundamental Directions, Hydrodynamics, Tome 28 (2008), pp. 3-144. http://geodesic.mathdoc.fr/item/CMFD_2008_28_a0/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] Alefeld G., Khertsberger Yu., Vvedenie v intervalnye vychisleniya, Mir, M., 1987 | MR

[3] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[4] Babenko K. I., Petrovich V. Yu., Rakhmanov A. I., “Vychislitelnyi eksperiment v teorii poverkhnostnykh voln konechnoi amplitudy”, Dokl. AN SSSR, 302:4 (1988), 781–785 | MR | Zbl

[5] Babenko K. I., Petrovich V. Yu., Rakhmanov A. I., “O dokazatelnom eksperimente v teorii poverkhnostnykh voln konechnoi amplitudy”, Dokl. AN SSSR, 303:5 (1988), 1033–1037 | MR

[6] Belotserkovskii O. M., Oparin A. M., Chislennyi eksperiment v turbulentnosti: Ot poryadka k khaosu, Nauka, M., 2001 | MR | Zbl

[7] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR

[8] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[9] Voinov V. V., Voinov O. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562 | Zbl

[10] Gaier D., Lektsii po teorii approksimatsii v kompleksnykh oblastyakh, Mir, M., 1986 | MR | Zbl

[11] Garipov R. M., “Neustanovivshiesya volny nad podvodnym khrebtom”, Dokl. AN SSSR, 161:3 (1965), 547–550 | Zbl

[12] Gyunter N. M., “Ob osnovnoi zadache gidrodinamiki”, Izvestiya Fiziko-matematicheskogo instituta im. V. A. Steklova, 2 (1927), 1–168

[13] Dyachenko A. I., Zakharov V. E., Kuznetsov E. A., “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 22:10 (1999), 916–928

[14] Zakharov V. E., “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, Prikladnaya mekhanika i teoreticheskaya fizika, 1968, no. 2, 86–94

[15] Innogamov N. A., “Turbulentnaya stadiya teilorovskoi neustoichivosti”, Pisma ZhTF, 4:12 (1978), 743–747

[16] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR | Zbl

[17] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 7-e izd., Fizmatlit, M., 2004 | MR | Zbl

[18] Korneichuk N. P., Splainy v teorii priblizhenii, Nauka, M., 1984 | MR

[19] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975 | MR

[20] Kurkin A. A., Pelinovskii E. N., Volny-ubiitsy: fakty, teoriya i modelirovanie, Nizhegorodskii gos. tekh. universitet, Nizhnii Novgorod, 2004

[21] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[22] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003

[23] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl

[24] Nalimov V. I., “Apriornye otsenki reshenii ellipticheskikh uravnenii v klasse analiticheskikh funktsii i ikh prilozheniya k zadache Koshi–Puassona”, Dokl. AN SSSR, 189:1 (1969), 45–49 | MR

[25] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR

[26] Nalimov V. I., “Nestatsionarnye vikhrevye volny”, Sib. mat. zhurn., 37:6 (1996), 1356–1366 | MR | Zbl

[27] Nekrasov A. I., “O volnakh ustanovivshegosya vida”, Izvestiya Ivanovo-Voznesenskogo politekhnicheskogo instituta, 3, 1921, 52–65 | Zbl

[28] Nekrasov A. I., Tochnaya teoriya voln ustanovivshigosya vida na poverkhnosti tyazheloi zhidkosti, Izdatelstvo AN SSSR, M., 1951 | MR

[29] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[30] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkale banakhovykh prostranstv”, Dokl. AN SSSR, 200:4 (1971), 789–792 | Zbl

[31] Protopopov B. E., “Chislennoe modelirovanie poverkhnostnykh voln v kanale peremennoi glubiny”, Vychislitelnye metody prikladnoi gidrodinamiki, 84 (1988), 91–105 | Zbl

[32] Pugachev V. S., Teoriya veroyatnostei i matematicheskaya statistika, Fizmatlit, M., 2002 | Zbl

[33] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[34] Solonnikov V. A., “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 1 (1991), 222–257 | MR | Zbl

[35] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[36] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[37] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[38] Shamin R. V., “O prostranstvakh nachalnykh dannykh dlya differentsialnykh uravnenii v gilbertovom prostranstve”, Mat. sb., 194:9 (2003), 141–156 | MR | Zbl

[39] Shamin R. V., “Ob odnom chislennom metode v zadache o dvizhenii idealnoi zhidkosti so svobodnoi poverkhnostyu”, Sib. zhurn. vych. mat., 9:4 (2006), 379–389 | Zbl

[40] Shamin R. V., “O suschestvovanii gladkikh reshenii uravnenii Dyachenko, opisyvayuschikh neustanovivshiesya techeniya idealnoi zhidkosti so svobodnoi poverkhnostyu”, Dokl. RAN, 406:5 (2006), 614–615 | MR | Zbl

[41] Shamin R. V., “K voprosu ob otsenke vremeni suschestvovaniya reshenii sistemy Koshi–Kovalevskoi s primerami v gidrodinamike so svobodnoi poverkhnostyu”, Sovremennaya matematika. Fundamentalnye napravleniya, 21, 2007, 133–148 | MR

[42] Shamin R. V., Vychislitelnye eksperimenty v modelirovanii poverkhnostnykh voln v okeane, Nauka, M., 2008 | Zbl

[43] Shamin R. V., “Ob otsenke vremeni suschestvovaniya reshenii uravneniya, opisyvayuschego poverkhnostnye volny”, Dokl. RAN, 418:5 (2008), 603–604 | MR | Zbl

[44] Shokin Yu. I., Intervalnyi analiz, Nauka, Novosibirsk, 1981 | Zbl

[45] Yudovich V. I., “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zhurnal vych. mat. i mat. fiz., 3:6 (1963), 1032–1066 | Zbl

[46] Butzer P. L., Berens H., Semi-groups of operators and approximations, Springer-Verlag, New York, 1967 | MR | Zbl

[47] Craig W., Sulem C., “Numerical simulation of gravity waves”, J. Comput. Phys., 108 (1993), 73–83 ; В. Крейг, К. Е. Вейн, “Математические аспекты поверхностных волн на воде”, УМН, 62:3(375) (2007), 95–116 | DOI | MR | Zbl | MR | Zbl

[48] Craig W., Wayne C. E., “Mathematical aspects of surface water waves”, Russ. Math. Surv., 62:3 (2007), 453–472 | DOI | MR | Zbl

[49] Dyachenko A. I., Kuznetsov E. A., Spector M. D., Zakharov V. E., “Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping)”, Phys. Lett. A, 221 (1996), 73–79 | DOI | MR

[50] Kato T., “On classical solutions of the two-dimensional nonstationary Euler equation”, Arch. Rational. Mech. Anal., 25 (1967), 188–200 | DOI | MR | Zbl

[51] Levi-Civita T., “Determination rigoreuse des ondes permanentes d'ampleur finie”, Math. Ann., 93 (1925), 264–314 | DOI | MR | Zbl

[52] Lewis D. J., “The instability of liguid surface when accelerated in direction perpendicular to their planes. II”, Proc. Roy. Soc. Sect. A, 202:1068 (1950), 81–96 | DOI

[53] Lichtenstein L., Grundlagen der Hydromechanik, Berlin, 1929

[54] Nishida T., “A note on a theorem of Nirenberg”, J. Differential Geom., 12 (1977), 629–633 | MR | Zbl

[55] Peetre J., Introduction to interpolation, Lecture notes, Department of Mathematics, Lund, 1966

[56] Stokes G. G., Mathematical and physical papers, Vol. 1, Cambridge University Press, 1880

[57] Taylor G., “The instability of liguid surface when accelerated in direction perpendicular to their planes. I”, Proc. Roy. Soc. Sect. A, 201:1065 (1950), 192–196 | DOI | MR | Zbl

[58] Treves F., Ovsyannicov theorem and hyperdifferential operatore, Instituto de Mathematica Pure e Aplicada, Rio de Janeiro, 1968 | MR

[59] Tsai W., Yue D., “Computations of nonlinear free-surface flows”, Annu. Rev. Fluid Mech., 28 (1996), 249–278 | DOI | MR

[60] Wu S., “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12:2 (1999), 445–495 | DOI | MR | Zbl

[61] Zakharov V. E., Dyachenko A. I, Prokofiev A. O., “Freak waves as nonlinear stage of Stokes wave modulation instability”, Eur. J. Mech. B Fluids., 25 (2006), 677–692 | DOI | MR | Zbl

[62] Zakharov V. E., Dyachenko A. I., Vasilyev O. A., “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, Eur. J. Mech. B Fluids., 21 (2002), 283–291 | DOI | MR | Zbl