Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2008_27_a1, author = {M. Guerra}, title = {Generalized solutions of singular optimal control problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {60--184}, publisher = {mathdoc}, volume = {27}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2008_27_a1/} }
M. Guerra. Generalized solutions of singular optimal control problems. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 27 (2008), pp. 60-184. http://geodesic.mathdoc.fr/item/CMFD_2008_27_a1/
[1] Agrachev A. A., Gamkrelidze R. V., “Eksponentsialnoe predstavlenie potokov i khronologicheskoe ischislenie”, Mat. sb., 107(149):4(12) (1978), 467–532 | MR | Zbl
[2] Agrachev A. A., Sarychev A. V., “O reduktsii gladkikh sistem, lineinykh po upravleniyu”, Mat. sb., 130(172):1(5) (1986), 18–34 | MR | Zbl
[3] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[4] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd. Tbil. un-ta, Tbilisi, 1975 | MR
[5] Krasnoselskii M. A., Pokrovskii A. V., “Vibrostabilnye differentsialnye uravneniya s razryvnymi pravymi chastyami”, Tr. Mosk. mat. o-va, 27, 1972, 92–112 | MR
[6] Orlov Yu., “Variatsionnyi analiz optimalnykh sistem s obobschennymi upravleniyami tipa mer, I”, Avtomatika i telemekhanika, 48 (1987), 160–165 | Zbl
[7] Orlov Yu., “Variatsionnyi analiz optimalnykh sistem s obobschennymi upravleniyami tipa mer, II”, Avtomatika i telemekhanika, 48 (1987), 306–316 | Zbl
[8] Orlov Yu., Teoriya optimalnykh sistem s obobschennymi upravleniyami, Nauka, M., 1988 | MR
[9] Sarychev A. V., “Integralnoe predstavlenie traektorii upravlyaemykh sistem s obobschennymi pravymi chastyami”, Differents. uravn., 24:9 (1988), 1551–1564 | MR | Zbl
[10] Agrachev A. A., Gamkrelidze R. V., Sarychev A. V., “Local invariants of smooth control systems”, Acta Appl. Math., 14 (1989), 191–237 | DOI | MR | Zbl
[11] Agrachev A. A., Sarychev A. V., “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. Poincaré, Anal. non linéaire, 13:6 (1996), 635–690 | MR | Zbl
[12] Bernstein D. S., Zeidan V., “The singular linear-quadratic regulator problem and the Goh–Riccati qquation”, Proc. 29th Conf. on Decision and Control (Honolulu, Hawaii, 1990), 334–339
[13] Bressan A., “On differential systems with impulsive controls”, Rend. Semin. Univ. Padova, 78 (1987), 227–235 | MR
[14] Bressan A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, J. Optimization Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl
[15] Casti J., “The linear-quadratic control problem: some recent results and outstanding problems”, SIAM Rev., 22 (1980), 459–485 | DOI | MR | Zbl
[16] Cesari L., Optimization Theory and Applications. Problems with Differential Equations, Springer-Verlag, 1983 | MR
[17] Clements D. J., Anderson B. D. O., Singular optimal control: The linear-quadratic problem, Lect. Notes Control Information Sci., Springer-Verlag, 1978 | MR
[18] Dirac P. A. M., Lectures on Quantum Mechanics, Belfer Graduate School of Science, 1964 | MR
[19] Gauthier J.-P., Zakalyukin V., “On the motion planning problem, complexity, entropy, and nonholonomic interpolation”, J. Dynam. Control Syst., 12 (2006), 371–404 | DOI | MR | Zbl
[20] Guerra M., “Generalized solutions for linear-quadratic optimal control problems”, Equadiff'99. Int. Conf. on Differential Equations, 2, eds. Fiedler B., Gröger K., Sprekels, J., World Scientific, 2000, 856–858 | MR | Zbl
[21] Guerra M., “Highly singular L-Q problems: Solutions in distribution spaces”, J. Dynam. Control Syst., 6:2 (2000), 265–309 | DOI | MR | Zbl
[22] Guerra M., “Singular L-Q problems and the Dirac–Bergmann theory of constraints”, Nonlinear Control in 2000, eds. Isidori A., Lamnabhi-Lagarrigue F., Respondek W., Springer-Verlag, 2001, 409–422 | MR
[23] Guerra M., Soluções generalizadas para problemas L-Q singulares, Ph.D. Thesis, University of Aveiro, 2001
[24] Guerra M., “Distribution-like Hamiltonian flows and generalized optimal controls”, J. Math. Sci., 120:1 (2004), 895–918 | DOI | MR | Zbl
[25] Guerra M., “Hamiltonian flows for impulsive control systems”, Generalized solutions in control problems, Proc. IFAC Workshop GSCP-04 and satellite events (September 21–29, 2004), ed. Sachkov Yu. L., Pereslavl-Zalessky, 2004, 77–92
[26] Guerra M., “Discontinuous Hamiltonian flows for nonlinear control systems”, Rend. Sem. Mat. Univ. Pol. Torino, 64:4 (2005), 363–382 | MR
[27] Guerra M., “Geometrical synthesis for noncoercive nonconvex optimal control problems”, Proc. of 7th Portuguese Conf. on Automatic Control Controlo'2006 (IST September 11–13, 2006), ed. Ayala Botto M., 2006, CD-ROM
[28] Guerra M., Sarychev A., “Generalized optimal controls for the singular linear-quadratic problem”, Proc. 3th Portuguese Conf. on Automatic Control, Controlo'98 (APCA, 1998), 431–436
[29] Guerra M., Sarychev A., “Regularizations of optimal control problems for control-affine systems”, Proc. 17th Int. Symp. on Mathematical Theory of Networks and Systems MTNS 2006 (Kyoto, Japan, July 24–28, 2006), ed. Yamamoto Y., 2006, 490–500
[30] Guerra M., Sarychev A., “Approximation of generalized minimizers and regularization of optimal control problems”, Preprints of the IFAC 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC'06) (Nagoya, Japan, July 19–21, 2006), eds. Bullo F. and Fujimoto K., 2006, 233–238 | MR
[31] Guerra M., Sarychev A., “Existence and Lipschitzian regularity for relaxed minimizers”, Proc. of Workshop on Mathematical Control Theory and Finance (Lisbon, Portugal, April 2007) | MR
[32] Jean F., “Entropy and complexity of a path in sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 9 (2003), 485–508 | DOI | MR | Zbl
[33] Jurdjevic V., “The Lie saturate and its pplications to singular control problems. New trends in nonlinear control theory”, Proc. Int. Conf. Nonlinear Syst. (Nantes, France, 1988), Lect. Notes Control Inf. Sci., 122, 1989, 222–230 | MR | Zbl
[34] Jurdjevic V., Geometric Control Theory, Cambridge Univ. Press, 1997 | MR | Zbl
[35] Judjevic V., Kupka I. A. K., Linear systems with singular quadratic cost, Preprint, 1992
[36] Kalman R. E., “Contributions to the theory of optimal control”, Bol. Soc. Mat. Mexicana, II. Ser., 5 (1960), 102–119 | MR | Zbl
[37] Kupka I. A. K., “Degenerate linear systems with quadratic cost under finiteness assumptions. New trends in nonlinear control theory”, Proc. Int. Conf. Nonlinear Syst. (Nantes, France, 1988), Lect. Notes Control Inf. Sci., 122, 1989, 231–239 | MR | Zbl
[38] Lee E. B., Markus L., Foundations of optimal control theory, Wiley, 1967 | MR | Zbl
[39] Miller B. M., Rubinovich E. Ya., Impulsive control in continuous and discrete-continuous systems, Springer-Verlag, 2003 | MR
[40] Rampazzo F., “Lie brackets and impulsive controls: An unavoidable connection”, Differential geometry and control, Proc. Summer Research Institute (Boulder, USA, 1997), Proc. Symp. Pure Math., 64, eds. Ferreyra G. et al., American Mathematical Society, 1999, 279–296 | MR | Zbl
[41] Riesz F., Sz.-Nagy B., Functional analysis, Dover Publ., 1990 | MR | Zbl
[42] Rudin W., Real and Complex Analysis, McGraw-Hill, 1987 | MR | Zbl
[43] Sarychev A., “Nonlinear systems with impulsive and generalized function controls”, Nonlinear Synthesis, Proc. IIASA Workshop (Sopron, Hungary, June 1989), eds. Byrnes C. I., Kurzhansky A., Birkäuser, 1991, 244–257 | MR
[44] Sontag E. D., Mathematical control theory: Deterministic finite-dimensional systems, Texts Appl. Math., 6, Springer-Verlag, 1990 | MR | Zbl
[45] Stefani G., Zezza P., “Constrained regular LQ-control problems”, SIAM J. Control Optimization, 35:3 (1997), 876–900 | DOI | MR | Zbl
[46] Volckaert K., Aeyels D., “The Gotay–Nester algorithm in Singular Optimal Control”, Proc 38th Conf. on Decision and Control (Phoenix, Arizona, USA, 1999), 873–874
[47] Willems J. C., Kitapçi A., Silverman L. M., “Singular optimal control: A geometric approach”, SIAM J. Control Optimization, 24:2 (1986), 323–337 | DOI | MR | Zbl
[48] Zavalishchin S. T., Sesekin A. N., “Dynamic impulse systems. Theory and Applications”, Math. Its Appl., 394, Kluwer, 1997 | MR | Zbl