Control theory on Lie groups
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 27 (2008), pp. 5-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2008_27_a0,
     author = {Yu. L. Sachkov},
     title = {Control theory on {Lie} groups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--59},
     publisher = {mathdoc},
     volume = {27},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_27_a0/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Control theory on Lie groups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 5
EP  - 59
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_27_a0/
LA  - ru
ID  - CMFD_2008_27_a0
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Control theory on Lie groups
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 5-59
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_27_a0/
%G ru
%F CMFD_2008_27_a0
Yu. L. Sachkov. Control theory on Lie groups. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 27 (2008), pp. 5-59. http://geodesic.mathdoc.fr/item/CMFD_2008_27_a0/

[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[2] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napravleniya, 16, VINITI, M., 1987, 5–85 | MR

[3] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M.-L., 1935

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl

[5] Sachkov Yu. L., “Upravlyaemost invariantnykh sistem na gruppakh Li i odnorodnykh prostranstvakh”, Dinamicheskie sistemy–8, Sovr. mat. prilozh. Tematicheskie obzory, 59, VINITI, M., 1998 ; http://www.botik.ru/PSI/CPRC/sachkov/public.html

[6] Sachkov Yu. L., “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Mat. sb., 194:9 (2003), 63–90 | MR | Zbl

[7] Sachkov Yu. L., “Diskretnye simmetrii v obobschennoi zadache Didony”, Mat. sb., 197:2 (2006), 95–116 | MR | Zbl

[8] Sachkov Yu. L., “Mnozhestvo Maksvella v obobschennoi zadache Didony”, Mat. sb., 197:4 (2006), 123–150 | MR | Zbl

[9] Sachkov Yu. L., “Polnoe opisanie stratov Maksvella v obobschennoi zadache Didony”, Mat. sb., 197:6 (2006), 111–160 | MR

[10] El Assoudi R., Gauthier J.-P., Kupka I., “On subsemigroups of semisimple Lie groups”, Ann. Inst. H. Poincaré, 13:1 (1996), 117–133 | MR | Zbl

[11] Ayala Bravo V., “Controllability of nilpotent systems”, Geometry in nonlinear control and differential inclusions, 32, Banach Center Publications, Warszawa, 1995, 35–46 | MR | Zbl

[12] Bonnard B., “Contrôllabilité des systèmes bilinéaires”, Math. Syst. Theory, 15 (1981), 79–92 | DOI | MR | Zbl

[13] Bonnard B., Jurdjevic V., Kupka I., Sallet G., “Transitivity of families of invariant vector fields on the semidirect products of Lie groups”, Trans. Amer. Math. Soc., 271:2 (1982), 525–535 | DOI | MR | Zbl

[14] Boothby W., “A transitivity problem from control theory”, J. Differ. Equat., 17 (1975), 296–307 | DOI | MR | Zbl

[15] Boothby W., Wilson E. N., “Determination of the transitivity of bilinear systems”, SIAM J. Control., 17 (1979), 212–221 | DOI | MR | Zbl

[16] Borel A., “Some remarks about transformation groups transitive on spheres and tori”, Bull. Amer. Math. Soc., 55 (1949), 580–586 | DOI | MR

[17] Borel A., “Le plan projectif des octaves et les sphères comme espaces homogènes”, C. R. Acad. Sci. Paris, 230 (1950), 1378–1380 | MR | Zbl

[18] Boscain U., Chambrion T., Gauthier J.-P., “On the $K+P$ problem for a three-level quantum system: Optimality implies resonance”, J. Dynam. Control Systems, 8 (2002), 547–572 | DOI | MR | Zbl

[19] Brockett R. W., “System theory on group manifolds and coset spaces”, SIAM J. Control., 10 (1972), 265–284 | DOI | MR | Zbl

[20] Gauthier J.-P., Bornard G., “Contrôlabilité des systèmes bilinèaires”, SIAM J. Control Optim., 20:3 (1982), 377–384 | DOI | MR | Zbl

[21] Hilgert J., Hofmann K. H., Lawson J. D., “Controllability of systems on a nilpotent Lie group”, Beiträge Algebra Geom., 20 (1985), 185–190 | MR | Zbl

[22] Jurdjevic V., Geometric control theory, Cambridge Univ. Press, 1997 | MR | Zbl

[23] Jurdjevic V., Kupka I., “Control systems subordinated to a group action: Accessibility”, J. Differ. Equat., 39 (1981), 186–211 | DOI | MR | Zbl

[24] Jurdjevic V., Kupka I., “Control systems on semi-simple Lie groups and their homogeneous spaces”, Ann. Inst. Fourier, 31:4 (1981), 151–179 | MR | Zbl

[25] Jurdjevic V., Sussmann H., “Control systems on Lie groups”, J. Differ. Equat., 12 (1972), 313–329 | DOI | MR | Zbl

[26] Lawden D. F., Elliptic functions and applications, Springer-Verlag, 1980 | MR

[27] Lawson J. D., “Maximal subsemigroups of Lie groups that are total”, Proc. Edinburgh Math. Soc., 30 (1985), 479–501 | DOI | MR

[28] Mittenhuber D., “Controllability of solvable Lie algebras”, J. Dynam. Control Systems, 6:3 (2000), 453–459 | DOI | MR | Zbl

[29] Mittenhuber D., “Controllability of systems on solvable Lie groups: the generic case”, J. Dynam. Control Systems, 7:1 (2001), 61–75 | DOI | MR | Zbl

[30] Monroy-Pérez F., “Non-Euclidean Dubins problem”, J. Dynam. Control Systems, 4:2 (1998), 249–272 | DOI | MR | Zbl

[31] Monroy-Pérez F., Anzaldo-Meneses A., “Optimal control on the Heisenberg group”, J. Dynam. Control Systems, 5:4 (1999), 473–499 | DOI | MR | Zbl

[32] Monroy-Pérez F., Anzaldo-Meneses A., “Optimal control on nilpotent Lie groups”, J. Dynam. Control Systems, 8:4 (2002), 487–504 | DOI | MR | Zbl

[33] Monroy-Pérez F., Anzaldo-Meneses A., “The step-2 nilpotent $(n,n(n+1)/2)$ sub-Riemannian geometry”, J. Dynam. Control Systems, 12:2 (2006), 185–216 | DOI | MR | Zbl

[34] Montgomery D., Samelson H., “Transformation groups of spheres”, Ann. Math., 44 (1943), 454–470 | DOI | MR | Zbl

[35] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Amer. Math. Soc., 2002 | MR

[36] Myasnichenko O., “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl

[37] Sachkov Yu. L., “Controllability of hypersurface and solvable invariant systems”, J. Dynam. Control Systems, 2:1 (1996), 55–67 | DOI | MR | Zbl

[38] Sachkov Yu. L., “Controllability of right-invariant systems on solvable Lie groups”, J. Dynam. Control Systems, 3:4 (1997), 531–564 | MR | Zbl

[39] Sachkov Yu. L., “On invariant orthants of bilinear systems”, J. Dynam. Control Systems, 4:1 (1998), 137–147 | DOI | MR | Zbl

[40] Sachkov Yu. L., “Classification of controllable systems on low-dimensional solvable Lie groups”, J. Dynam. Control Systems, 6:2 (2000), 159–217 | DOI | MR | Zbl

[41] Sachkov Yu. L., “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[42] Sachkov Yu. L., “Maxwell strata in Euler's elastic problem” (to appear)

[43] Samelson H., “Topology of Lie groups”, Bull. Amer. Math. Soc., 58 (1952), 2–37 | DOI | MR | Zbl

[44] San Martin L. A. B., “Invariant control sets on flag manifolds”, Math. Control Signal Systems, 6 (1993), 41–61 | DOI | MR | Zbl

[45] San Martin L. A. B., do Rocio O. G., Santana A. J., “Invariant cones and convex sets for bilinear control systems and parabolic type of semigroups”, J. Dynam. Control Systems, 12 (2006), 419–432 | DOI | MR | Zbl

[46] San Martin L. A. B., Tonelli P. A., “Semigroup actions on homogeneous spaces”, Semigroup Forum, 14 (1994), 1–30

[47] Silva Leite F., Crouch P., “Controllability on classical Lie groups”, Math. Control Signal Systems, 1 (1988), 31–42 | DOI | MR | Zbl

[48] Troncoso R. M. M., “Regular elements and global controllability in $\mathrm{SL}(d,R)$”, J. Dynam. Control Systems, 10:1 (2004), 29–54 | DOI | MR | Zbl

[49] Warner F. W., Foundations of differentiable manifolds and Lie groups, Scott, Foresman, Glenview, Ill., 1971 | MR | Zbl